Abbey-Wood Air Tightness Testing Certified by AF-Acoustics

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Revisions were made to building regulations to address air leakages – a process where air escapes through any opening in the building, affecting its energy efficiency. AF Acoustics certificates are certified by Air Tightness Testing and Measurement Association (ATTMA). ATTMA is an association of specialists that concentrate on promoting the best air tightness measurements and air permeability testing techniques. We are a dedicated and approved air leakage testing service in Abbey-Wood and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. We are professionals who take the time to explain the testing process, we are able to give informed advice on where problem areas may occur during testing, and how improvements can be made based on results of air pressure testing. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. It can also be called air pressure testing or air leakage testing. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage Explained

This occurs when openings in a building lead to excess air flow into and out of the building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Is the Impact of Air Leakage?

Heat loss within a building can be caused by air leakage. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. Once there’s infiltration, exfiltration will occur in another part of the building. Warm, moist air seeps into cool cavities in the building’s fabric. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. Wooden sheathing or overlay becomes wet, making it weak.

These problems will eventually cause structural harm to the building.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

The key to minimising the damage potential of moisture is effectively managing the flow of air into and out of the building. Air leakage and vapour diffusion are minimised when barriers are installed. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why Should We Do an Air Tightness test?

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Heating buildings involves burning fossil fuel which increases CO2 emissions and causes global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. A great option would be to build tight and ventilate right. The result of uncontrollable air moving into the building fabric could be health problems and costly repairs.

When Do I Need an Air Tightness Test?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The results of the test are used in SAP and SBEM calculations, and can influence a building’s overall energy rating. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

If the building has not been tested for air tightness, assessed air permeability rate is the average result of similar buildings in the area +2m3/h/m2 at 50 Pa. It’s better to test each property because selective testing does not give a realistic picture of individual buildings. Besides, air permeability rates are difficult to achieve for untested buildings in such areas due to the +2m3/h/m2 penalty.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

At AF Acoustics, our air tightness testing expertise has helped many home and business owners in Abbey-Wood. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Expert information and service

Due to years of experience in conducting air tightness testing in different kinds of buildings in Abbey-Wood, we have the skills to meet your needs no matter the type or size of your property. We have competent and accredited air testing professionals who provide a quality, convenient service. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Abbey-Wood.

Registered member of the Air Tightness Testing & Measurement Association (ATTMA)

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

When to Call Us to Test Your Building

We want you to be able to access comprehensive air tightness testing in Abbey-Wood whenever you need it. Pick a time that is convenient for you in our responsive scheduling options. We guarantee no delays or complications regarding scheduling.

Next-day Turnaround for Certificates

In order to satisfy our clients, AF Acoustics strives to provide test results and certificates on the next day.

Affordable Prices

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Abbey-Wood.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

We Conduct Tests for All Types of Buildings in Abbey-Wood

Regardless of the size, type, or complexity of your domestic or commercial building in Abbey-Wood, we can provide you with air tightness testing, carried out by an experienced and professional air tightness tester and issue you a certified ATTMA certificate. The best way to determine how much air seeps through a building’s fabric is through air permeability testing. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is a requirement of Approved Document L1A and L2A. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Abbey-Wood. With air leakage tests, business areas are more comfortable for employees and customers. Heating and cooling expenses are also reduced and the environment is more productive.

Part L Test Explained

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. You can exceed the CO2 discharge and Building Regulations target and raise your building’s energy performance by testing for air leakage.

Part F Test Explained

We can complete all your Part F and Part L testing requirements. In addition to conducting your air pressure test and extract fan flow rate testing, we can put you in contact with professionals who provide SAP calculations, Energy Performance Certificates, and water calculations.
New buildings should ensure that all mechanical extract fans are tested for flow rate, as stipulated by Part F of the Building Regulations. Evidence of this test must be passed to the Building Control Body (BCB) as part of their sign-off procedure. There are 3 available methods for examining, recording and reporting the testing of extract fans. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


What Kinds of Air Tightness Testing Services Do We Offer?

Here are the descriptions of the ways air permeability can be tested: First Level – For building 1m3-4000m3, single and smaller non-dwellings, a single blower door fan is used to carry out the test. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Air tightness testing for phased, zonal handover and LCHR constructions is done.

Domestic Buildings Testing as Required by Approved Document L1

Air pressure testing, involves the calculation of air escaping through openings in a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L1A. Your building may need a lower rate to meet the CO2 discharge target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

Approved Document L2A Air Pressure Testing of Commercial Constructions

Air tightness testing determines the extent of air leaking from a building’s envelope. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Air tightness testing is required by Building Regulations. The test results have a limit; they shouldn’t be higher than 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

We Offer Smoke Shaft Air Pressure Testing

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Automatic opening vents help storey buildings dispel smoke when there is a fire. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft is tested for air permeability by using a fan that is fixed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. The fixing and commissioning of the auto opening vents happen after the test is completed.

Measurement of Air Flow of Domestic Ventilation

Buildings that are well insulated and air tight are the standard for buildings. As a result, a high-quality ventilation system that is adequate and performs as required is vital. We have the capacity to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Air Tightness Test and Building Preparation Method

Air tightness tests calculate the level of air leakage a building has and if it is excessive. When air leakage is reduced in a building, the occupants will not experience discomfort and the energy performance will increase.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. Buildings that don’t undergo the test are penalised. All dwellings in a development should be tested to ensure optimum air tightness.

Pre-Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Measuring the Building’s Envelope

We conduct building envelope calculations prior to the test. A building envelope is the boundary between the conditioned and unconditioned environment of a building. The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Envelope Area Air Permeability

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Cold Roof Envelope Area Measurement

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Warm Roof Envelope Area Measurement

In a warm roof, the main insulation is placed below the roof covering. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Building readiness

To get the building ready, close and secure all internal doors, windows, Temporarily seal vents and smoke vents. Also fill drainage traps.

Site Test Process

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan to an aperture within the construction envelope. For example, the door. Set up the equipment for air tightness testing. Record the air volume flow passing through the fan. Slowly raise the fan speed from 20-25Pa to 55-60Pa. The pressure differences in the building at each fan speed should be calculated.

Air Leakage Calculation

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Pressure Testing & Compliance

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Your ventilation system will operate in a better way Reduced chance of mould and rot, as moisture is less likely to become trapped Fewer draughts and enhanced comfort Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Best Practice Procedures

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. The regulation is focused on the conservation of fuel and power usage. The dwelling should be tested for air permeability in line with existing building standards, as stipulated by Approved Document Part L1A.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. They explain in detail and provide guidelines for BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. For developments of two or more dwellings, an air leakage test should be carried out on the three units of each dwelling type; or 50% of all instances of that dwelling type. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. Find out from your SAP assessor if this is applicable to you. The required process for testing buildings for air tightness has been declared in ATTMA TSL1 for occupied buildings and ATTMA TSL2 for unoccupied ones. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Building Regulations Part L (England And Wales)

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. It is based on the performance criteria and knowledge requirements set out in the suite of National Occupation Standards (NOS) and under the requirements of the Minimum Technical Competence (MTC) document.

Air leakage testers have three levels

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • Air tightness testing is done in all dwellings but big phased handover/zonal and high rise (LCHR) constructions are not included except a level three tester is the head of the team.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report on Test for Air Permeability

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. This is done according to the testing organisation’s procedures and Building Regulation standards.

Outcome of Air Leak Test

We analyse our tests and results for any divergence from the standards required and check the air pressure rate against target rate. That way, our results are expressed in line with test standards. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.