Blackwall Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. Air tightness testing has been a compulsory part of the building regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006.

Revisions were made to building regulations to address air leakages – a process where air escapes through any opening in the building, affecting its energy efficiency. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. We are dedicated and accredited air leakage testing service providers in Blackwall and we are available to provide you with testing services whenever required. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. We don’t just provide air tightness testing. We describe the process thoroughly, give expert advice on areas that could be problematic during testing, and suggest improvements based on the air permeability rating of the building. AF Acoustics provides services that are cost effective and of high standard.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air leakage and air pressure are also used in place of air tightness. Air leakage, also known as infiltration or draught, allows air to pass through unwanted leaks in a building; unlike ventilation where the air inside and outside of a building and its flow from one end to the other is controlled. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. Because the government is striving to scale back carbon dioxide discharge from new buildings, building rules now focuses on reducing air loss from the building envelope. This helps reduce CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. Building plans will often consider air tightness at the beginning stages of development so as to measure up to stricter building standards. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

Air Leakage, what Is It?

Air leakage is where air enters and leaves a building uncontrollably through cracks and holes in the building fabric. When the circulation of air is properly monitored and bridled, ventilation has occurred. Another name for air leakage is infiltration. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. The water vapour in the moist air condenses on the inner wall surface holes. After a while, it is absorbed into building materials and diffuses, causing potential structural problems. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

Over the years, these problems can damage the building’s structure.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

These effects can be mitigated by controlling the circulation of air into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


The Importance of Air Tightness Test

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. The best advice is to “Construct tightly, ventilate properly”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Should an Air Tightness Test Be Done?

A building should ideally be air tightness tested early in the construction process and again at the end of the building project, although sometimes only the final check is carried out. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. With selective testing there is a penalty of +2m3/h/m2; if the target score is 5 m3/h/m2 and selective testing was applied, the air tightness test would have to achieve a lower score of 3.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why AF Acoustics Is the Right Choice for Your Air Tightness Testing

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Blackwall. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Service and knowledge

Due to years of experience in conducting air tightness testing in different kinds of buildings in Blackwall, we have the skills to meet your needs no matter the type or size of your property. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. AF Acoustics is the crew you need in Blackwall to give you the best solutions.

Registered by the Leading Air Tightness Body in UK

We are registered with ATTMA, a professional body that focuses on high quality air tightness testing and air permeability applications. This means our services are endorsed by the leading air leakage testing body in the UK.

When to Call Us to Test Your Building

We want to provide detailed air permeability testing in Blackwall for you whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. We won’t make you wait or make the process complicated.

You Could Get Your Certificates on the Next Day

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Affordable Prices

At AF Acoustics, we offer the most competitive prices in Blackwall to ensure you have access to affordable air tightness testing when you need it. We keep the costs down, as we are a small business with low overheads. This allows us to be competitive with our pricing whilst guaranteeing a professional service.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in Blackwall

We can test any building in Blackwall for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The result is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of building fabric.

Air tightness testing is recommended by Approved Document L1A and L2A. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. Excessive air leakage causes discomfort due to heat reduction and carbon dioxide discharge. It also creates convective loops within a building’s internal structure, leading to energy loss. Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. Air permeability testing is a legal requirement for constructions in Blackwall. This way, they can have high energy performance, meet building regulations requirements and get signed off by building control. With air leakage tests, business areas are more comfortable for employees and customers. Heating and cooling expenses are also reduced and the environment is more productive.

Part L Test Explained

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Other names for air tightness are air permeability rate or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Part L of the Building Regulations requires that all non-domestic buildings which have a gross floor area greater than 500m2, be subject to mandatory air permeability tests. For domestic dwellings, a sample of houses (in a development) must be tested. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air leakage is vital to a building’s energy efficiency and is needed to meet Building Regulations Part L and carbon emission standards.

Part F Test

We will ensure that you exceed all the Parts L and F standards. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. AF Acoustics employs the minimum benchmark procedure (method 3), which involves using a vane anemometer.


Different Ways We Test for Air Permeability

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Level 2: Air pressure testing for simple and complex buildings larger than 4000 m³ gross envelope volume which does not include large and complex, high rise (LCHR) buildings, and phased handover/zonal buildings. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Approved Document L1 Air Pressure Testing of Houses

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is written as m3 per hour per square metre of building. Air leakage testing is a requirement of Approved Document L1A. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

Approved Document L2A Air Pressure Testing of Commercial Constructions

Air tightness testing determines the extent of air leaking from a building’s envelope. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and draught.

Air Leakage Test of Smoke Shafts for Auto Vents

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. The shaft is tested for air permeability by using a fan that is fixed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. Once the test is completed and successful, the automatic opening vents are installed.

Testing Extraction Fans for Air Flow

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. We test fan extraction rates. This is done to meet the Building Regulations standard. Make sure the ventilation system is efficient, expels pollutants and odours, and reduces humidity, especially in kitchens and bathrooms. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Precise Air Pressure Test and Building Procedure

The measurement of air pressure in a building is known as an air tightness test. The greater the air tightness of a building, the more comfortable the occupants are and the higher its energy performance.

Causes of excess air leakage are often hard to detect. These openings might not be seen because of the internal finishes that have been fixed. The most acceptable approach to show that a building fabric is impermeable is to identify leakage paths within it.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

Requirements before the Test

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. We would like to know the requirements and the building envelope’s size prior to testing. The tests take 30 – 60 minutes, and wind speed does not surpass 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Measurement

We take the building envelope calculations before the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Air Permeability from the Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Exchange Rate

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Cold Roof Envelope Area Measurement

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has its insulation at the ceiling level, with space between the insulation and rafters.

Warm Roof Envelope Area Measurement

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

Process for Testing the building

Check weather conditions (wind speed, temperature, barometric pressure); Connect a fan to an aperture within the construction envelope. For example, the door. Set up the equipment for air tightness testing. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Gradually increase the speed of the fan to a maximum of 55-60Pa. Record how the air pressure differs at each fan speed.

Air Leakage Measurement

We analyse the air tightness test data, point out any air leakage path and send a report to clients. If the building fails the test, we suggest remedial measures to the client. Air Pressure Testing & Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Better ventilation system Your building will have less mould since moisture cannot escape into holes and cavities. Fewer draughts and enhanced comfort Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. Our services include: air pressure testing, support services, re-examining designs and consultancy for all buildings in Blackwall. We are cost effective and adhere to all building regulations.


Best Practice Procedures

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. This regulation was put in place to conserve fuel and power. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

There are technical standards for air tightness test of buildings in the UK detailed by Air Tightness Test and Measurement Association (ATTMA). The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

Undergoing an air tightness test is compulsory for your new building, according to Part L of Building Regulations. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. A development with only two dwellings may not undergo a test if a suggested value of 15m3/h/m2 is stipulated in the DER/TER measurements. Your SAP assessor will let you know if you can do this for your building. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air leakage testing is required on all residential developments (this may be a sample of units) and certain Non-Dwellings. Non-dwellings with a typical floor area less than 500m2 may be exempt. Where testing is not carried out, an assessed air permeability of 15 m3/h/m2 must be used in calculations.

Building Regulations Part L (England And Wales)

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. It is based on the performance criteria and knowledge requirements set out in the suite of National Occupation Standards (NOS) and under the requirements of the Minimum Technical Competence (MTC) document.

Testers can be divided into three types

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Air Leakage Test Report

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. Temporary sealing of extraction units will be done by the tester; all test results will be noted, and a shortened form report will be written which will include the findings of the test. The report adheres to the company’s methods and all standards and requirements of Building Regulations.

Outcome of Air Leak Test

AF Acoustics will ensure the test result is written in accordance with the test standard requirements, identify any deviations from the relevant standards within the report and check air tightness against target value. The identity of the customer, tester, building and address are correctly written in our report. In the event that a building fails the test, we suggest methods of improving the building and what repairs to do on the building fabric if a retest is required.

Resources Air Tightness Checklist – Building

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.