ATTMA Licensed Air Tightness Testing in Grove-Park

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. Our certificates for air tightness testing are registered with the Air Tightness Testing and Measurement Association (ATTMA), a professional body that focuses on high quality air tightness testing and air permeability applications. We are a dedicated and approved air leakage testing service in Grove-Park and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

We are registered members of the ATTMA. As a result, our air tightness certificates prove that the building requirements for your building have been met. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. It can also be called air pressure testing or air leakage testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Air tightness testing is done to calculate the total quantity of air that escapes through cracks in the building. Such air leakage is called uncontrolled ventilation (draughts). Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Because the government is striving to scale back carbon dioxide discharge from new buildings, building rules now focuses on reducing air loss from the building envelope. This helps reduce CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. With the introduction of tougher regulations, building designs will often consider air tightness at the early stages of the construction process, ensuring attention to detail during construction to create an air-tight envelope. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

Air Leakage

Air leakage is where air enters and leaves a building uncontrollably through cracks and holes in the building fabric. When the circulation of air is properly monitored and bridled, ventilation has occurred. Another name for air leakage is infiltration. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Air leakage and a dwelling’s energy efficiency are intertwined. Testing is needed to verify that air tightness levels used in the building’s energy calculations align with the targets required by the law. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Are the Problems Air Leakage Can Cause?

When air escapes uncontrollably from a building, heat reduction occurs. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. Wet wooden overlay or framing can decay, decreasing its durability.

These problems will eventually cause structural harm to the building.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

The key to minimising the damage potential of moisture is effectively managing the flow of air into and out of the building. The potential of vulnerable wall structures to absorb condensed moisture is reduced when air barriers are properly installed and uncontrolled air flow is reduced. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


The Importance of Air Tightness Test

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. Building tightly and ventilating the right way is highly recommended. The result of uncontrollable air moving into the building fabric could be health problems and costly repairs.

When Your Building Needs an Air Tightness Test

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. Selective testing has a penalty of +2m3/h/m2. If target score is 5m3/h/m2, air tightness test score will have to be 3m3/h/m2.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. It’s better to test each property because selective testing does not give a realistic picture of individual buildings. Besides, air permeability rates are difficult to achieve for untested buildings in such areas due to the +2m3/h/m2 penalty.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Grove-Park. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Expert information and service

In Grove-Park, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We have competent and accredited air testing professionals who provide a quality, convenient service. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Grove-Park –the right team for your building.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered with ATTMA, a professional body that focuses on high quality air tightness testing and air permeability applications. This means our services are endorsed by the leading air leakage testing body in the UK.

Picking a Time for Your Air Permeability Test

We want to provide detailed air permeability testing in Grove-Park for you whenever you need it. We offer responsive scheduling. Schedule for your building to be tested at your convenience. We guarantee no delays or complications regarding scheduling.

Next-day Turnaround for Certificates

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Affordable Prices

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Grove-Park.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Grove-Park

Regardless of the size, type, or complexity of your domestic or commercial building in Grove-Park, we can provide you with air tightness testing, carried out by an experienced and professional air tightness tester and issue you a certified ATTMA certificate. Air tightness test checks the extent of uncontrolled air moving through openings in the building envelope. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Approved Document L1A and L2A demands that buildings take tests for air leaks. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and discomfort. It can also create convective loops within a building; this is often referred to as thermal bypassing and wind washing. Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Grove-Park. For commercial constructions, air pressure tests result in a better environment for workers and customers. This increases the company’s productivity and lowers heating and cooling expenses.

Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness can also be called air leakage or air permeability rate. Air leaks through gaps and spaces in the building fabric such as service penetrations, walls and roof junctions. Sometimes, this is not obvious to occupants. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

The Part F Test

We can complete all your Part F and Part L testing requirements. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. The Building Control Body (BCB) has to see the results of the test as part of its sign-off procedure. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


Forms of Air Pressure Testing Services We Provide

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: A single blower door fan is used for air tightness testing for single buildings and smaller non-dwellings not more than 4000m3. The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high rise (LCHR) buildings. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air pressure testing, involves the calculation of air escaping through openings in a building. The result of the air leakage test is expressed as a quantity of air leakage (mm3 per hour) per square metre of building envelope. Air tightness testing is required for new builds. A building has to achieve a lower rate to meet the carbon dioxide emission target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are inscribed using m3 per hour per square metre. Air tightness testing is required by Building Regulations. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Testing the Smoke Shaft of Automatic Opening Vents

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. The shaft undergoes air leakage testing when fans are placed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Domestic Ventilation Air Flow Testing (Extract Fans)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. Extract fans are tested by us. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Particular Test and Building Readiness Operation

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We recommend that all dwellings be tested, as there is a penalty for developments that are not tested.

Requirements before the Test

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Calculations

Before coming to the site, we get the measurement of the building’s envelope. The building envelope, is the physical barrier between the exterior and interior of a construction. The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Barrier Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Change Rate

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Cold Roof Construction Envelope Area Calculation

Measuring if the roof area and ground floor area of a building are the same is vital. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Building Test Method

Check all weather conditions such as temperature, wind speed and barometric pressure. Fix a fan to an aperture, usually the door, in the building. Ensure all the testing equipment is ready. Using the fan, measure the air flow volume, from the building fabric. Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Measuring air leakage

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Pressure Testing & Compliance

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: Your heating expenses are less because heat doesn’t escape through a permeable building, and you won’t require appliances with more heating capability. The ventilation system will operate optimally Your building will have less mould since moisture cannot escape into holes and cavities. Thermal comfort is enhanced because air infiltration is lower. Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Good and Best Practice Styles

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. The regulation is focused on the conservation of fuel and power usage. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. They explain in detail and provide guidelines for BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation for England and Wales, Part L 2010

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. A development with only two dwellings may not undergo a test if a suggested value of 15m3/h/m2 is stipulated in the DER/TER measurements. Your SAP assessor will let you know if you can do this for your building. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Building Regulations Part L (England And Wales)

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air tightness testers can be divided into three categories

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • Air tightness testing is done in all dwellings but big phased handover/zonal and high rise (LCHR) constructions are not included except a level three tester is the head of the team.
  • Air tightness testing for phased, zonal handover, LCHR and multifaceted constructions is carried out by level three experts.

Air Pressure Test

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The report adheres to the company’s methods and all standards and requirements of Building Regulations.

Air Tightness Test Results

AF Acoustics will ensure the test result is written in accordance with the test standard requirements, identify any deviations from the relevant standards within the report and check air tightness against target value. We make sure our report has the name of the building, customer, address and tester. Where applicable, we will identify pass or failure of your building and provide recommendations for any remedial action or improvement to the building if any further testing is required.

Resources Air Tightness Checklist – Dwelling

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway Checklist – Use this checklist to make sure you are ready for the test. Ask yourself, “Have I sealed any visible opening?” Check the following appliances.

  • Junction between floor and wall under kitchens and baths
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Windows
  • Metre boxes
  • Hot water tank
  • Chimney
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Drainage traps

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.