Hadley Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing determines the quantity of air coming out of cracks in a building. It is also known as air permeability testing or air leakage testing. Air tightness testing has been a compulsory part of the building regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are dedicated and accredited air leakage testing service providers in Hadley and we are available to provide you with testing services whenever required. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is Air Tightness Testing?

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. When too much air leaks through a building’s fabric, heat loss occurs, making the occupants uncomfortable. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

What Air Leakage Is

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. Air leakage testing plays a significant role in the energy-saving efficacy of properties. With air tightness testing, you can be sure that the building has met the stipulated targets used for energy calculation and air tightness. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Are the Problems Air Leakage Can Cause?

Heat loss within a building can be caused by air leakage. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. The warm air is filled with moisture, which hits the inner wall surface and condenses. Moisture is sucked into the building material, and this can lead to serious structural issues. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

As the years go by, these conditions can result in structural damage.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


Why Must We Do an Air Tightness Test?

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Heating buildings involves burning fossil fuel which increases CO2 emissions and causes global warming. A reduction in air leakage lessens the heat needed to keep a building warm. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. The best advice is to “Construct tightly, ventilate properly”. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

Recommended Period for Air Tightness Test

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. With selective testing there is a penalty of +2m3/h/m2; if the target score is 5 m3/h/m2 and selective testing was applied, the air tightness test would have to achieve a lower score of 3.

buildings that have not been tested are assessed for air permeability based on similar dwellings’ test scores +2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why Choose AF Acoustics for Your Air Tightness Testing?

Business owners and home owners in Hadley have been helped by AF Acoustics air tightness testing. Our clients highly recommend us for the following reasons.

Great service and expertise

Due to years of experience in conducting air tightness testing in different kinds of buildings in Hadley, we have the skills to meet your needs no matter the type or size of your property. Our accredited air testing experts are polite and competent. They are trained to provide the service you need and fit around your project. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Hadley.

Registered by the Leading Air Tightness Body in UK

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

Scheduling Your Air Tightness Testing

Our comprehensive air permeability testing in Hadley is available. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. We guarantee that there will be no delays or difficulties.

You Could Get Your Certificates on the Next Day

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Competitive Pricing

AF Acoustics offers competitive fees in Hadley. Since we’re a small business, we offer less expensive air permeability testing and render high quality services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

We Conduct Tests for All Types of Buildings in Hadley

We can test any building in Hadley for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Approved Document L1A and L2A demands that buildings take tests for air leaks. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Hadley. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. Heating and cooling expenses are also reduced and the environment is more productive.

The Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness can also be called air leakage or air permeability rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Part L of the Building Regulations requires that all non-domestic buildings which have a gross floor area greater than 500m2, be subject to mandatory air permeability tests. For domestic dwellings, a sample of houses (in a development) must be tested. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. You can exceed the CO2 discharge and Building Regulations target and raise your building’s energy performance by testing for air leakage.

The Part F Test

We can complete all your Part F and Part L testing requirements. In addition to conducting your air pressure test and extract fan flow rate testing, we can put you in contact with professionals who provide SAP calculations, Energy Performance Certificates, and water calculations.
Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Evidence of this test must be passed to the Building Control Body (BCB) as part of their sign-off procedure. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


The types of Air Tightness Testing Services We Offer

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. A single blower door fan is used for air tightness testing for single buildings and smaller non-dwellings not more than 4000m3. The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high rise (LCHR) buildings. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

The measurement of air emitted by a building is tested to determine air permeability rating. The result of the air leakage test is expressed as a quantity of air leakage (mm3 per hour) per square metre of building envelope. Part L1A of Building Regulations stipulates that such tests be conducted. A lower air permeability rate might be needed due to carbon emission requirements. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air pressure testing involves the calculation of air escaping through the openings in a building. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Air tightness testing is required by Building Regulations. The results of air permeability rate should not exceed 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

We Offer Smoke Shaft Air Pressure Testing

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Automatic opening vents help storey buildings dispel smoke when there is a fire. The performance of the fans and vents depends on the air tightness of the shaft. Air tight shafts have enough pressure difference to extract smoke and save people inside a building during fire emergencies. We’re committed to automatic opening vents builders’ target for air permeability. This enables the vents to work efficiently. An air pressure test is taken for the smoke shaft by installing a fan inside. The intended openings of the shaft (i.e. extract point and openings for ventilation grilles on each floor) are sealed off for the test so that the integrity of the shaft itself can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

Buildings that are well insulated and air tight are the standard for buildings. As a result, a high-quality ventilation system that is adequate and performs as required is vital. We test fan extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Particular Test and Building Readiness Operation

The measurement of air pressure in a building is known as an air tightness test. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The best solution to demonstrate a building’s air tightness level is to check for leakage paths in the building envelope.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. We recommend that all dwellings be tested, as there is a penalty for developments that are not tested.

What Should You Do Before Testing Your Building?

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

How We Measure the Building Envelope

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The building envelope calculations are taken from the drawings and used for our air tightness testing.

Air Barrier Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Change Rate

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Cold Roof Envelope Area Measurement

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Warm Roof Envelope Area Measurement

In a warm roof, an air barrier is inside the insulation which runs on the pitched roof rafters. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Building readiness

To get the building ready, close and secure all internal doors, windows, Temporarily seal vents and smoke vents. Also fill drainage traps.

Site Test Process

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan to an aperture within the construction envelope. For example, the door. Fix the instrument for testing. Calculate the air flow volume through the fan which equates to the air leakage. Gradually increase the speed of the fan to a maximum of 55-60Pa. Record how the air pressure differs at each fan speed.

Measuring air leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Tightness Testing and Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. Better ventilation system Lower levels of mould due to less moisture collecting in gaps and cavities. Fewer draughts and enhanced comfort From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Best Practice Procedures

Building Regulation Part L1A 2010 stipulates that all new buildings must have low air permeability. Less fuel and power are consumed by buildings. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Requirements Part L 2010 (England and Wales)

Undergoing an air tightness test is compulsory for your new building, according to Part L of Building Regulations. Those exceptions only occur when there are two or more dwellings in a development. Three units of a dwelling type or 50% of all examples of that dwelling type should be tested. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. Find out from your SAP assessor if this is applicable to you. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Air leakage testing is compulsory for residential areas and certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

England and Wales: Building Regulations Part L

ATTMA has a scheme for air leakage test organisations, which commenced in January 2015. The scheme was approved by the government and is stated in Technical Standard L1 and L2. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Air leakage testers have three levels

  • Air tightness testing for single buildings and smaller non-dwellings not more than 4000m3 is done with a fan.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • Level Three: Testing for the air pressure of high rise (LCHR) buildings, phased handover/zonal buildings and other complex buildings is carried out by level three experts.

Air Pressure Test

Air leakage test reports are given by authorised organisations that test different buildings. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. The organisation makes sure the report meets the company and government’s requirements.

Results of the Test

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. Clients’ test reports contain their names, construction, address; the tester’s name is also included. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Dwelling

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.