Air Tightness Testing, Certified by AF-Acoustics, in Hampton-Wick

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Air leakage occurs through any opening in the building envelope and can affect a building’s energy performance, this has been addressed by changes to the building regulations. Our certificates for air tightness testing are registered with the Air Tightness Testing and Measurement Association (ATTMA), a professional body that focuses on high quality air tightness testing and air permeability applications. Located in Hampton-Wick, our company is a committed and accredited air permeability testing service provider; we provide air testing services. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. We don’t just provide air tightness testing. We describe the process thoroughly, give expert advice on areas that could be problematic during testing, and suggest improvements based on the air permeability rating of the building. Our services provide great value for money at high standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is Air Tightness Testing?

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. It is sometimes referred to as air leakage testing or air pressure testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Air tightness testing is important in establishing air leakage from a building’s fabric, the energy efficiency of a new building and in identifying poor build quality within new developments. Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage, what Is It?

This occurs when openings in a building lead to excess air flow into and out of the building. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. It leads to heat deprivation when cold draughts happen and warmth is needed the most. Because air leakage is uncontrolled ventilation, excessive air flows into the house during windy and wintry weather. Air leakage testing plays a significant role in the energy-saving efficacy of properties. With air tightness testing, you can be sure that the building has met the stipulated targets used for energy calculation and air tightness. In England and Wales, air tightness testing has been obligatory since 2006. All new dwellings and non-dwellings over 500m² are to be tested for air permeability.

What Are the Problems Air Leakage Can Cause?

Air leakage leads to heat reduction. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

These problems will eventually cause structural harm to the building.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. Air leakage and vapour diffusion are minimised when barriers are installed. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why You Should Conduct an Air Tightness Test

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. A reduction in air leakage lessens the heat needed to keep a building warm. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. A great option would be to build tight and ventilate right. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Is an Air Tightness Test Needed?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

Where the dwelling has not been pressure tested, the assessed air permeability is the average test result obtained from other dwellings of the same dwelling type on the development, increased by +2.0 m3/h/m2 at 50 Pa. It’s better to test each property because selective testing does not give a realistic picture of individual buildings. Besides, air permeability rates are difficult to achieve for untested buildings in such areas due to the +2m3/h/m2 penalty.

Why AF Acoustics Is the Right Choice for Your Air Tightness Testing

With AF Acoustics, homes and businesses in Hampton-Wick have been getting quality air tightness testing. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Helpful service and information

Due to years of experience in conducting air tightness testing in different kinds of buildings in Hampton-Wick, we have the skills to meet your needs no matter the type or size of your property. We have competent and accredited air testing professionals who provide a quality, convenient service. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Hampton-Wick.

Registered by the Leading Air Tightness Body in UK

AF Acoustics is a member of ATTMA, an association of specialists that concentrates on promoting the best air tightness measurements and air permeability testing techniques. It is the leading air permeability testing body in the UK and has recognised our competence and services.

When to Call Us to Test Your Building

We would like to give your building in Hampton-Wick a thorough air leakage test whenever it is needed. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. There won’t be delays or complications once you’ve fixed a time.

You Could Get Your Certificates on the Next Day

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Competitive Charges

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Hampton-Wick at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in Hampton-Wick

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is a requirement of Approved Document L1A and L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. In order to comply with the carbon emission target, it may be necessary to achieve a lower air permeability rate. The required air permeability rate for each building can be found on the design-stage SAP assessment or SBEM for that building. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and discomfort. It can also create convective loops within a building; this is often referred to as thermal bypassing and wind washing. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Hampton-Wick. Clients and employees will be at ease in their surroundings. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

What Is Part L Test?

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. Other names for air tightness are air permeability rate or leakage rate. Although not always seen, air leakage can occur through any gap, space or crack in a building’s fabric. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test

We can complete all your Part F and Part L testing requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. You can test, document and report the test of your building’s extractor fans in three ways. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


The types of Air Tightness Testing Services We Offer

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: A single blower door fan is used for air tightness testing for single buildings and smaller non-dwellings not more than 4000m3. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Domestic Buildings Testing as Required by Approved Document L1

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Air pressure testing is compulsory, according to Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The required rate can be found in a building’s design-stage SAP assessment SBEM. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

The measurement of air emitted by a building is tested to ascertain air permeability rating. The test results are inscribed using m3 per hour per square metre. Air tightness testing is required by Building Regulations. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. For the vents and fans to operate at the expected level, the smoke shaft must be air tight to create a difference in air pressure and give emergency services when needed. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft undergoes air leakage testing when fans are placed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Domestic Ventilation Air Flow Testing (Extract Fans)

Buildings that are well insulated and air tight are the standard for buildings. As a result, a high-quality ventilation system that is adequate and performs as required is vital. We are able to test extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Specific Test and Building Preparation Procedure

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. The most acceptable approach to show that a building fabric is impermeable is to identify leakage paths within it.

Under the new policies of building developments, the lowest number of domestic buildings developers have to test in an area is 20%. However, this depends on the quantity of different house kinds to ensure there is a regular sample throughout the survey. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

Requirements before the Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. The test engineers would like to have the information needed for the test before coming to your development. Our air leakage test is done between 30 and 60 minutes, and the wind speed is a maximum of 6m/s. Making your building ready by ensuring it has an air tight environment will involve:

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

Building Envelope Measurement

We take the building envelope calculations before the test. A building envelope is the boundary between the conditioned and unconditioned environment of a building. The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Air Barrier Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Exchange Rate

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Measuring a Cold Roof Construction’s Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has its insulation at the ceiling level, with space between the insulation and rafters.

Warm Roof Construction Envelope Area Calculation

A warm roof is a roof where the insulation is installed on top of the roof structure. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

Site Test Procedure

Check all weather conditions such as temperature, wind speed and barometric pressure. Connect a fan to an aperture within the construction envelope. For example, the door. Fix the instrument for testing. Using the fan, measure the air flow volume, from the building fabric. Gradually increase the speed of the fan to a maximum of 55-60Pa. Record how the air pressure differs at each fan speed.

Evaluating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Pressure Testing & Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: Your heating expenses are less because heat doesn’t escape through a permeable building, and you won’t require appliances with more heating capability. Better ventilation system Lower probability of mould because moist air won’t condense in the openings in the building envelope. Thermal comfort is enhanced because air infiltration is lower. From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Best Practice Processes

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. To find if your building falls into this category, contact your SAP assessor. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Both residential areas and many non-Dwellings are to take the air leakage test. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

England and Wales: Building Regulations Part L

ATTMA has a scheme for air leakage test organisations, which commenced in January 2015. The scheme was approved by the government and is stated in Technical Standard L1 and L2. It is based on the performance criteria and knowledge requirements set out in the suite of National Occupation Standards (NOS) and under the requirements of the Minimum Technical Competence (MTC) document.

Testers can be divided into three types

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report on Test for Air Permeability

Accredited testing companies issue air pressure reports. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. This is done according to the testing organisation’s procedures and Building Regulation standards.

Results of the Test

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Dwelling

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Leakage Pathway Checklist – Check will be done for visible leaks in the following places:

  • Windows: Check the seal beneath the sills and around the frames.
  • Doors: Check the seal around all external door surrounds (especially French doors).
  • Drainage traps: Check if they are filled with water.
  • Skirting and coving: Check above and below all skirting and coving, sealing where necessary.
  • Metre Boxes: Check all external supplies are sealed appropriately.
  • Light Fittings: Check the seal around all light fittings and switches.
  • Radiators / Fans / Heaters: Check the seal around all pipes and wires.
  • Boilers: Check the seal around the boiler supply and flue.
  • Extractor Fans: Check around the edge of the extracts, only the front of the grill can be sealed.
  • Cooker Hoods: Check the seals around all penetrations.
  • Soil pipes: Check the seal around all soil pipes and sink waste pipes especially those boxed in or behind kitchen cabinets.
  • Bath Panels: Check if all pipes behind bath panels are sealed properly.
  • Hot water tank: Check the seal around all supply pipes.
  • MVHR: Check seal around all terminals.
  • Chimneys: Open fireplaces must be sealed prior to our arrival.
  • Tumble drier extracts: Check the seal around the extract.
  • Junction between floor and wall under kitchens and baths

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.