Honor-Oak Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. Our Air Tightness Testing certificates are registered with Air Tightness Testing and Measurement Association (ATTMA), a professional association dedicated to promoting technical excellence in all air tightness testing and air leakage measurement applications. We are a dedicated and approved air leakage testing service in Honor-Oak and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

We are registered members of the ATTMA. As a result, our air tightness certificates prove that the building requirements for your building have been met. If you want specialist air pressure testing services in Honor-Oak, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. It can also be called air pressure testing or air leakage testing. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. As Government strives to reduce CO2 emissions from new buildings, building regulations now place greater emphasis on reducing air leakage from the building envelope. This reduces fuel consumption and CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. When the building fabric is properly constructed to reduce air loss, the building is economical, and energy efficient.

What Air Leakage Is

This occurs when openings in a building lead to excess air flow into and out of the building. When the circulation of air is properly monitored and bridled, ventilation has occurred. Another name for air leakage is infiltration. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. During windy weather, cold air infiltrates a building through the openings in its fabric. This results in heat loss. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

These problems will eventually cause structural harm to the building.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

These effects can be mitigated by controlling the circulation of air into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why Should We Do an Air Tightness test?

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Heating buildings involves burning fossil fuel which increases CO2 emissions and causes global warming. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. There are also health issues associated with uncontrolled air leakage. When a building has poor levels of controlled ventilation and high levels of uncontrolled air leakage, this can cause excessive moisture and mould growth, leading to poor health. A great option would be to build tight and ventilate right. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Your Building Needs an Air Tightness Test

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Because selective testing does not conduct tests for all buildings, a tested building might have a much higher air tight rate than an untested building; making it unreliable. The 2m3/h/m2 penalty added to untested buildings makes the air permeability rate hard to achieve.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Honor-Oak. We are recommended by our clients for the following reasons.

Helpful service and information

In Honor-Oak, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We have competent and accredited air testing professionals who provide a quality, convenient service. Do you need trustworthy professionals who will provide great results in Honor-Oak? Contact AF Acoustics today.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

When Can You Call Us to Test Your Building?

We want to provide detailed air permeability testing in Honor-Oak for you whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. We won’t make you wait or make the process complicated.

Quick Turnaround on Test Certificates Where Possible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Fair Pricing

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Honor-Oak.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

We Conduct Tests for All Types of Buildings in Honor-Oak

All domestic and commercial buildings in Honor-Oak can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is a requirement of Approved Document L1A and L2A. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Honor-Oak. With air leakage tests, business areas are more comfortable for employees and customers. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

A Description of Part L Test

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. The Building Regulations (Part L) demand that a selected group of different kinds of residential constructions and all non-domestic buildings greater than 500m2 perform air leakage tests. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

A Description of Part F Test

All your Part L and Part F testing requirements can be met by us. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. The Building Control Body (BCB) has to see the results of the test as part of its sign-off procedure. There are 3 available methods for examining, recording and reporting the testing of extract fans. Using a vane anemometer, our testing procedure follows Method 3 – The minimum benchmark method.


Forms of Air Pressure Testing Services We Provide

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Level 2: Air pressure testing for simple and complex buildings larger than 4000 m³ gross envelope volume which does not include large and complex, high rise (LCHR) buildings, and phased handover/zonal buildings. Third Level – Testing is done for large high rise and phased handover buildings.

Domestic Buildings Testing as Required by Approved Document L1

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Document L1A of Building Regulations declares air leakage testing to be mandatory. The carbon discharge requirement for all buildings reduces the air permeability rate target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Part L2A of Building Regulations has demanded that such tests be conducted. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. When there is a fire, the auto opening vents play an important part in expelling smoke in multi-storey buildings. The performance of the fans and vents depends on the air tightness of the shaft. Air tight shafts have enough pressure difference to extract smoke and save people inside a building during fire emergencies. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft is tested for air permeability by using a fan that is fixed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. The fixing and commissioning of the auto opening vents happen after the test is completed.

Domestic Ventilation Air Flow Testing (Extract Fans)

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We have the capacity to test extraction rates. It is important to ensure the ventilation strategy is working effectively. This helps to remove pollutants from the air and control excess humidity, particularly in rooms such as bathrooms and kitchens. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Precise Air Pressure Test and Building Procedure

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. When air leakage is reduced in a building, the occupants will not experience discomfort and the energy performance will increase.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The most acceptable approach to show that a building fabric is impermeable is to identify leakage paths within it.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. We recommend that all buildings be tested as those that aren’t are penalised.

What You Need to Do Before Undertaking the Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

How We Measure the Building Envelope

Before coming to the site, we get the measurement of the building’s envelope. The building envelope, is the physical barrier between the exterior and interior of a construction. The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Air Permeability & The Envelope Area

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Changes Per Hour

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Cold Roof Construction Envelope Area Calculation

Measuring if the roof area and ground floor area of a building are the same is vital. A cold roof is the kind of roof where the insulation is fixed in the ceiling joists with space between the insulation and roof rafters.

Evaluating a Warm Roof Envelope Area

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Process for Testing the building

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Place the fan on an aperture within the building envelope. Set up the testing gear. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Gradually increase the speed of the fan to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Air Leakage Measurement

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Leakage Testing and Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. A functional ventilation system Lower probability of mould because moist air won’t condense in the openings in the building envelope. You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Good & Best Practice Methods

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. An SAP assessor can decide which buildings can use the assumed value successfully. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Both residential areas and many non-Dwellings are to take the air leakage test. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

England and Wales: Building Regulations Part L

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. It is based on the performance criteria and knowledge requirements set out in the suite of National Occupation Standards (NOS) and under the requirements of the Minimum Technical Competence (MTC) document.

Air tightness testers can be divided into three categories

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Air Tightness Test Report

Air tightness reports are issued by accredited firms that carry out air permeability tests on buildings of different sizes or complexities. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. This is done according to the testing organisation’s procedures and Building Regulation standards.

Outcome of Air Leak Test

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. Our reports correctly note the client, air tightness tester, building and address. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Dwelling

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.