ATTMA Licensed Air Tightness Testing in Little-Heath

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. We are a dedicated and approved air leakage testing service in Little-Heath and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

We are registered members of the ATTMA. As a result, our air tightness certificates prove that the building requirements for your building have been met. If you want specialist air pressure testing services in Little-Heath, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our customers get greater value for money spent, and our testing services are of superior quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

Air tightness testing is carried out to determine the volume of air escaping from holes in a building fabric. Air leakage and air pressure are also used in place of air tightness. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Air tightness testing is important in establishing air leakage from a building’s fabric, the energy efficiency of a new building and in identifying poor build quality within new developments. Building plans will often consider air tightness at the beginning stages of development so as to measure up to stricter building standards. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

Air Leakage

Air leakage occurs when air escapes through holes and gaps in a building. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. All commercial buildings over 500m² and new buildings in England and Wales are mandated to test for air tightness and permeability, according to the 2006 Building Regulations.

What Are the Problems Air Leakage Can Cause?

Air leakage leads to a reduction in heat. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. The strength of the outer wooden covering is drastically reduced because it is wet.

Over time, any of these conditions can cause structural damage.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why You Should Conduct an Air Tightness Test

Climate change caused by carbon dioxide emission is an environmental hazard that government is trying to curb. Energy performance and air tightness is a key part of this plan. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. When air leakage is controlled, heat loss and energy used by the heating system are reduced. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. The best advice is to “Construct tightly, ventilate properly”. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

Recommended Period for Air Tightness Test

A building should ideally be air tightness tested early in the construction process and again at the end of the building project, although sometimes only the final check is carried out. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Because selective testing does not conduct tests for all buildings, a tested building might have a much higher air tight rate than an untested building; making it unreliable. The 2m3/h/m2 penalty added to untested buildings makes the air permeability rate hard to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Little-Heath. We are recommended by our clients for the following reasons.

Helpful service and information

Due to years of experience in conducting air tightness testing in different kinds of buildings in Little-Heath, we have the skills to meet your needs no matter the type or size of your property. Our accredited air testing experts are polite and competent. They are trained to provide the service you need and fit around your project. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Scheduling Your Air Tightness Testing

We would like to give your building in Little-Heath a thorough air leakage test whenever it is needed. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. You won’t get delays or difficulties when scheduling.

Quick Turnaround on Test Certificates Where Possible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Affordable Prices

AF Acoustics, a small business with low overheads, offers one of the best prices in Little-Heath and guarantees professional services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Little-Heath

All domestic and commercial buildings in Little-Heath can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Approved Document L1A and L2A demands that buildings take tests for air leaks. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Excessive air leakage causes discomfort due to heat reduction and carbon dioxide discharge. It also creates convective loops within a building’s internal structure, leading to energy loss. Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Little-Heath. Clients and employees will be at ease in their surroundings. Heating and cooling expenses are also reduced and the environment is more productive.

Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Air tightness can also be called air leakage or air permeability rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. The Building Regulations (Part L) demand that a selected group of different kinds of residential constructions and all non-domestic buildings greater than 500m2 perform air leakage tests. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test Explained

We will help you with all your Parts L and F requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Types of Air Leakage Testing Services We Offer

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. Air tightness testing for phased, zonal handover and LCHR constructions is done.

Approved Document L1 Air Pressure Testing of Houses

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result of the air leakage test is expressed as a quantity of air leakage (mm3 per hour) per square metre of building envelope. Document L1A of Building Regulations declares air leakage testing to be mandatory. A lower air permeability rate might be needed due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment SBEM. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Air tightness testing is required by Building Regulations. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. Automatic opening vents help storey buildings dispel smoke when there is a fire. For the vents and fans to operate at the expected level, the smoke shaft must be air tight to create a difference in air pressure and give emergency services when needed. We’re committed to automatic opening vents builders’ target for air permeability. This enables the vents to work efficiently. The shaft is tested for air permeability by using a fan that is fixed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. The test takes place in advance of the automatic-opening ventilation equipment being installed and commissioned.

We Offer Extraction Fan Testing

The mandate to construct well insulated and air tight buildings, has made it crucial for satisfactory, enhanced and balanced ventilation systems to be installed. We have the capacity to test extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Specific Test and Building Preparation Procedure

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. We recommend that all dwellings be tested, as there is a penalty for developments that are not tested.

Pre-Test Requirements

The client needs to send our test engineers the drawings of the development (plans and elevations) and target air permeability requirements. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. To prepare the site for the test, do the following:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Calculating the Building Envelope

We undertake the building envelope calculations before we arrive on the site. The building envelope is the surface area of the thermal boundary of the building. The building envelope calculations are taken from the drawings and used for our air tightness testing.

Air Permeability from the Envelope Area

Approved Document L1A Conservation of Fuel and Power in New Dwellings (2010) defines air permeability as “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)” and envelope area as “the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.”

Air Changes Per Hour

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Evaluating a Cold Roof Envelope Area

This is essential to determine if the roof area is the same as the ground floor area. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Warm Roof Envelope Area Measurement

In a warm roof, the main insulation is placed below the roof covering. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Site Test Procedure

Evaluate the weather (barometric pressure, wind speed and temperature) Connect a fan to an opening, like the door, in the building fabric. Set up testing equipment. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. Record how the air pressure differs at each fan speed.

Air Leakage Calculation

We analyse the air tightness test data, point out any air leakage path and send a report to clients. If the building fails the test, we suggest remedial measures to the client. Air Pressure Testing & Compliance

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Lower energy costs and need for heating appliances due to a higher level of heat retention. Your ventilation system will operate in a better way Your building will have less mould since moisture cannot escape into holes and cavities. Thermal comfort is enhanced because air infiltration is lower. Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in Little-Heath. We also provide cost-effective, local service that complies with all relevant Building Standards.


Best Practice Processes

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). Less fuel and power are consumed by buildings. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. Find out from your SAP assessor if this is applicable to you. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

Building Regulations for England and Wales, Part L

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Air leakage testers have three levels

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Air Tightness Test Report

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Outcome of Air Leak Test

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. We make sure our report has the name of the building, customer, address and tester. In the event that a building fails the test, we suggest methods of improving the building and what repairs to do on the building fabric if a retest is required.

Resources Air Tightness Checklist – Building

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.