Air Tightness Testing, Certified by AF-Acoustics, in Putney-Vale

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Air tightness testing has been a compulsory part of the building regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. Located in Putney-Vale, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

Our air leakage test certificate is approved by ATTMA and is an indication that a building has been signed off by building control. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. Our services provide great value for money at high standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing involves calculating the quantity of air which escapes through holes in the building fabric. It can also be called air pressure testing or air leakage testing. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

Air Leakage, what Is It?

This occurs when openings in a building lead to excess air flow into and out of the building. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Air leakage and a dwelling’s energy efficiency are intertwined. Testing is needed to verify that air tightness levels used in the building’s energy calculations align with the targets required by the law. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Effects of Air Leakage

Heat loss within a building can be caused by air leakage. During windy weather, cold air infiltrates a building through the openings in its fabric. This results in heat loss. As cold seeps inside, warm moist air escapes through the cracks and gaps in the building. Some of it settles within the building’s fabric. The water vapour in the moist air condenses on the inner wall surface holes. After a while, it is absorbed into building materials and diffuses, causing potential structural problems. Wet wooden overlay or framing can decay, decreasing its durability.

As the years go by, these conditions can result in structural damage.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why is an Air Tightness Test Important?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. When air leakage is controlled, heat loss and energy used by the heating system are reduced. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. Building tightly and ventilating the right way is highly recommended. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Is an Air Tightness Test Needed?

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

If the building has not been tested for air tightness, assessed air permeability rate is the average result of similar buildings in the area +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why You Should Choose AF Acoustics for Your Air Tightness Testing

With AF Acoustics, homes and businesses in Putney-Vale have been getting quality air tightness testing. Our clients highly recommend us for the following reasons.

Expert information and service

Due to years of experience in conducting air tightness testing in different kinds of buildings in Putney-Vale, we have the skills to meet your needs no matter the type or size of your property. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Putney-Vale –the right team for your building.

Registered by the Leading Air Tightness Body in UK

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

Responsive scheduling

Our comprehensive air permeability testing in Putney-Vale is available. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. We guarantee no delays or complications regarding scheduling.

Quick Turnaround on Test Certificates Where Possible

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Competitive Pricing

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Putney-Vale at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Putney-Vale

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. The best way to determine how much air seeps through a building’s fabric is through air permeability testing. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Air tightness testing is recommended by Approved Document L1A and L2A. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Putney-Vale. Clients and employees will be at ease in their surroundings. It will also help you reduce the cost of maintaining heating or cooling in your commercial building, making it more productive.

The Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Air tightness is referred to as air permeability or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. The Building Regulations (Part L) demand that a selected group of different kinds of residential constructions and all non-domestic buildings greater than 500m2 perform air leakage tests. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

Part F Test Explained

We can complete all your Part F and Part L testing requirements. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


The types of Air Tightness Testing Services We Offer

There are several levels of air leakage testing based on the kind, size and multifaceted aspects of a dwelling. Here they are: First Level – For building 1m3-4000m3, single and smaller non-dwellings, a single blower door fan is used to carry out the test. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Approved Document L1 Air Pressure Testing of Houses

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L1A. The carbon discharge requirement for all buildings reduces the air permeability rate target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Air pressure testing is compulsory, according to Approved Document L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. You can find the required air permeability rate of your building in its design-stage SAP or SBEM assessment. Uncontrolled air leakage can cause several problems. They are: infiltration of cold air, discomfort, reduction in heat, and higher CO2 emission rate.

We Offer Smoke Shaft Air Pressure Testing

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. When there is a fire, the auto opening vents play an important part in expelling smoke in multi-storey buildings. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. Fans are placed in the smoke shaft to conduct an air tightness test. The intended openings of the shaft (i.e. extract point and openings for ventilation grilles on each floor) are sealed off for the test so that the integrity of the shaft itself can be determined. Once the test is completed and successful, the automatic opening vents are installed.

We Offer Extraction Fan Testing

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We test fan extraction rates. It is important to ensure the ventilation strategy is working effectively. This helps to remove pollutants from the air and control excess humidity, particularly in rooms such as bathrooms and kitchens. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Specific Test and Building Preparation Procedure

Air tightness test determines the level of air permeability in a building. If the rate of air pressure is good, the energy performance of a building will be high and the inhabitants will be comfortable.

Causes of excess air leakage are often hard to detect. These openings might not be seen because of the internal finishes that have been fixed. If you know the leakage paths of a building, you will know if it is air tight.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

Pre-Test Requirements

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Shut the windows
  • Close the smoke vents
  • Open and secure all inner doors
  • Put off the mechanical vents
  • Close ventilation
  • Fill drainage traps
  • Put off range cookers/stoves a day before the test (if applicable)

Calculating the Building Envelope

We take the building envelope calculations before the test. The building envelope is the physical separator between the indoors and outdoors. The building envelope calculations are taken from the drawings and used for our air tightness testing.

Air Permeability & The Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Change Rate

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. Residential ventilation rates are calculated based on area of the residence and number of occupants.

Calculating the Envelope Area of a Cold Roof

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

In a warm roof, an air barrier is inside the insulation which runs on the pitched roof rafters. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Building Test Method

Examine the wind speed, barometric pressure and temperature. Place the fan on an aperture within the building envelope. Ensure all the testing equipment is ready. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Gradually increase the speed of the fan to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Air Leakage Calculation

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Tightness Testing and Compliance

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. A functional ventilation system Less mould will be trapped in the building fabric as a result of less moisture. Infiltration of air is reduced and the inhabitants are more comfortable. Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in Putney-Vale. We also provide cost-effective, local service that complies with all relevant Building Standards.


Good and Best Practice Styles

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). Less fuel and power are consumed by buildings. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

Approved document L1A has made it compulsory for all new buildings to be tested for air leaks. For developments of two or more dwellings, an air leakage test should be carried out on the three units of each dwelling type; or 50% of all instances of that dwelling type. If there are no more than two new dwellings, using an assumed value of 15m3/h/m2 in the DET/TER calculations might exempt them from air tightness testing. Your SAP assessor will let you know if you can do this for your building. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Air leakage testing is compulsory for residential areas and certain Non-Dwellings. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

Part L Building Regulations Standards for England and Wales

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. The scheme echoes the conditions of the Minimum Technical Competence (MTC) and the National Occupation Standard (NOS) documents.

Air leakage testers have three levels

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Report for Air Leaks Test

Air tightness reports are issued by accredited firms that carry out air permeability tests on buildings of different sizes or complexities. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The organisation makes sure the report meets the company and government’s requirements.

Outcome of Air Leak Test

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. The identity of the customer, tester, building and address are correctly written in our report. We will state if your building has passed or failed the test and give advice on the actions you need to take if another test is needed.

Resources Air Tightness Checklist – Dwelling

Go through the list below and send the design air testing permeability value to us before we get to the site.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.