Air Tightness Testing, Certified by AF-Acoustics, in South-Tottenham

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Revisions were made to building regulations to address air leakages – a process where air escapes through any opening in the building, affecting its energy efficiency. AF Acoustics certificates are certified by Air Tightness Testing and Measurement Association (ATTMA). ATTMA is an association of specialists that concentrate on promoting the best air tightness measurements and air permeability testing techniques. AF Acoustics, a licensed air tightness testing company, is available to provide testing services at your request. Our address is South-Tottenham. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. Our services provide great value for money at high standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What It Means

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air leakage and air pressure are also used in place of air tightness. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. When the building fabric is properly constructed to reduce air loss, the building is economical, and energy efficient.

Air Leakage Explained

Air leakage is where air enters and leaves a building uncontrollably through cracks and holes in the building fabric. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Air leakage and a dwelling’s energy efficiency are intertwined. Testing is needed to verify that air tightness levels used in the building’s energy calculations align with the targets required by the law. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

Over time, any of these conditions can cause structural damage.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. Air leakage and vapour diffusion are minimised when barriers are installed. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why You Should Conduct an Air Tightness Test

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Environmental change caused by carbon dioxide emissions and global warming is partly aided by the burning of fossil fuels to generate heat. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. To “Construct tight, ventilate right” is the best practice. High degrees of air leaks cause huge problems such as expensive remedial work on the building and medical problems.

When Is an Air Tightness Test Needed?

A building should ideally be air tightness tested early in the construction process and again at the end of the building project, although sometimes only the final check is carried out. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. It’s better to test each property because selective testing does not give a realistic picture of individual buildings. Besides, air permeability rates are difficult to achieve for untested buildings in such areas due to the +2m3/h/m2 penalty.

Why Choose AF Acoustics for Your Air Tightness Testing?

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in South-Tottenham. Our clients highly recommend us for the following reasons.

Helpful service and expert knowledge

In South-Tottenham, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We have competent and accredited air testing professionals who provide a quality, convenient service. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Registered member of the Air Tightness Testing & Measurement Association (ATTMA)

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Scheduling Your Air Tightness Testing

We want to provide detailed air permeability testing in South-Tottenham for you whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. You won’t get delays or difficulties when scheduling.

Test Certificates Get to You on the Next Day, Where Feasible

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Fair Pricing

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in South-Tottenham at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in South-Tottenham

We can test any building in South-Tottenham for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is a requirement of Approved Document L1A and L2A. Although your building is required to have a rating result of 10m3/h/m2, the actual result might have to be lower than that due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment or SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. In South-Tottenham, the law demands that all new buildings be tested for air pressure before they can be approved and signed off by building control. This enables dwellings achieve energy efficiency standards. Clients and employees will be at ease in their surroundings. It will also help you reduce the cost of maintaining heating or cooling in your commercial building, making it more productive.

The Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness can also be called air leakage or air permeability rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. You can exceed the CO2 discharge and Building Regulations target and raise your building’s energy performance by testing for air leakage.

Part F Test

We can complete all your Part F and Part L testing requirements. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. You can test, document and report the test of your building’s extractor fans in three ways. Use method 3 – the minimum benchmark method, which tests extractor fans with vane anemometers. This is our testing procedure.


Types of Air Leakage Testing Services We Offer

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air tightness testing determines the extent of air leaking out a building’s envelope. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Air tightness testing is required for new builds. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The required rate can be found in a building’s design-stage SAP assessment SBEM. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

Commercial Building Testing as Required by Approved Document L2A

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Document L2A of Building Regulations declares air leakage testing to be mandatory. The test results have a limit; they shouldn’t be higher than 10m3/h/m2. Your building may need a lower air permeability rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Automatic opening vents help storey buildings dispel smoke when there is a fire. The performance of the fans and vents depends on the air tightness of the shaft. Air tight shafts have enough pressure difference to extract smoke and save people inside a building during fire emergencies. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft undergoes air leakage testing when fans are placed inside it. The intended openings of the shaft (i.e. extract point and openings for ventilation grilles on each floor) are sealed off for the test so that the integrity of the shaft itself can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Measurement of Air Flow of Domestic Ventilation

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We evaluate extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Air Tightness Test and Building Preparation Method

An air tightness test measures the extent of air leakage in a building. When air leakage is reduced in a building, the occupants will not experience discomfort and the energy performance will increase.

Gaps and cracks in the building that cause air leakage are often difficult to detect. They may be obscured by the internal building finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

What Should You Do Before Testing Your Building?

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To prepare the site for the test, do the following:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Calculating the Building Envelope

We undertake the building envelope calculations before we arrive on the site. The building envelope, is the physical barrier between the exterior and interior of a construction. The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Permeability from the Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Exchange Rate

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. The number of inhabitants and area of residence are used in measuring residential ventilation rates.

Measuring a Cold Roof Construction’s Envelope Area

Measuring if the roof area and ground floor area of a building are the same is vital. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Evaluating a Warm Roof Envelope Area

In a warm roof, an air barrier is inside the insulation which runs on the pitched roof rafters. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Building readiness

To get the building ready, close and secure all internal doors, windows, Temporarily seal vents and smoke vents. Also fill drainage traps.

Building Test Method

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan to an opening, like the door, in the building fabric. Fix the instrument for testing. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Slowly raise the fan speed from 20-25Pa to 55-60Pa. Record how the air pressure differs at each fan speed.

Measuring air leakage

We analyse the recorded air tightness test data and present the results to the client in a technical report. In the event of test failure, we advise the client on appropriate mitigation measures. Our expert knowledge will help in highlighting the areas of air leakage. Testing for Air Tightness & Meeting Part L Standards

Making sure your building is air tight and has adequate ventilation, be it natural, mechanical, or a combination of the two, will aid your comfort. Find below the benefits: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Better ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped Fewer draughts and enhanced comfort From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in South-Tottenham. We also provide cost-effective, local service that complies with all relevant Building Standards.


Best Practice Procedures

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. This regulation was put in place to conserve fuel and power. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Testing for Air Permeability on Building Fabrics, According to L1 Technical Standard.

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. Find out from your SAP assessor if this is applicable to you. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Air leakage testing is required on all residential developments (this may be a sample of units) and certain Non-Dwellings. Non-dwellings with a typical floor area less than 500m2 may be exempt. Where testing is not carried out, an assessed air permeability of 15 m3/h/m2 must be used in calculations.

England and Wales: Building Regulations Part L

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

Air pressure testers have three levels

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • Air tightness testing is done in all dwellings but big phased handover/zonal and high rise (LCHR) constructions are not included except a level three tester is the head of the team.
  • Air tightness testing for phased, zonal handover, LCHR and multifaceted constructions is carried out by level three experts.

Air Pressure Test

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. Extraction fans will be sealed temporarily; the results of the test are recorded in a short report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Outcomes

Our test and subsequent results are conducted and written to meet standard requirements, highlight any deviation from the standards and crosscheck air pressure values against target values. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Go through the list below and send the design air testing permeability value to us before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.