The-Burroughs Air Tightness Testing, Licensed by AF-Acoustics

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our Air Tightness Testing certificates are registered with Air Tightness Testing and Measurement Association (ATTMA), a professional association dedicated to promoting technical excellence in all air tightness testing and air leakage measurement applications. As a certified air leakage testing company in The-Burroughs, we are ready to provide testing services whenever you want. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. AF Acoustics provides services that are cost effective and of high standard.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage

Air leakage is where air enters and leaves a building uncontrollably through cracks and holes in the building fabric. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. Air leakage testing plays a significant role in the energy-saving efficacy of properties. With air tightness testing, you can be sure that the building has met the stipulated targets used for energy calculation and air tightness. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Is the Impact of Air Leakage?

Air leakage leads to a reduction in heat. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. Wooden sheathing or overlay becomes wet, making it weak.

These problems will eventually cause structural harm to the building.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why Must We Do an Air Tightness Test?

Climate change caused by carbon dioxide emission is an environmental hazard that government is trying to curb. Energy performance and air tightness is a key part of this plan. Heating buildings involves burning fossil fuel which increases CO2 emissions and causes global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Uncontrolled air leakage also results in health problems. Coupled with poor air circulation, it leads to the growth of mould and mildew. Building tightly and ventilating the right way is highly recommended. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Should an Air Tightness Test Be Done?

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. Selective testing has a penalty of +2m3/h/m2. If target score is 5m3/h/m2, air tightness test score will have to be 3m3/h/m2.

buildings that have not been tested are assessed for air permeability based on similar dwellings’ test scores +2m3/h/m2 at 50 Pa. Because selective testing does not conduct tests for all buildings, a tested building might have a much higher air tight rate than an untested building; making it unreliable. The 2m3/h/m2 penalty added to untested buildings makes the air permeability rate hard to achieve.

Why You Should Choose AF Acoustics for Your Air Tightness Testing

With AF Acoustics, homes and businesses in The-Burroughs have been getting quality air tightness testing. Our clients highly recommend us for the following reasons.

Service and knowledge

Our experience in serving diverse customers in The-Burroughs is proof of our ability to satisfy your requirements no matter the size and type of building, or your circumstance. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Registered by the Leading Air Tightness Body in UK

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

When Can You Call Us to Test Your Building?

We want you to be able to access comprehensive air tightness testing in The-Burroughs whenever you need it. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. There won’t be delays or complications once you’ve fixed a time.

Quick Turnaround on Test Certificates Where Possible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Fair Pricing

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in The-Burroughs at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in The-Burroughs

All domestic and commercial buildings in The-Burroughs can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. Air permeability testing calculates how much air moves through spaces in your building’s fabric. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Approved Document L1A and L2A demands that buildings take tests for air leaks. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in The-Burroughs. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. This increases the company’s productivity and lowers heating and cooling expenses.

The Part L Test

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. Other names for air tightness are air permeability rate or leakage rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air leakage is vital to a building’s energy efficiency and is needed to meet Building Regulations Part L and carbon emission standards.

Part F Test

We will help you with all your Parts L and F requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


What Kinds of Air Tightness Testing Services Do We Offer?

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. First Level – For building 1m3-4000m3, single and smaller non-dwellings, a single blower door fan is used to carry out the test. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Air Tightness Testing of Houses and Flats to Meet Approved Document L1

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is written as m3 per hour per square metre of building. Air leakage testing is a requirement of Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Too much air leakage leads to heat loss which can lead to draughts and higher energy bills.

Approved Document L2A Air Pressure Testing of Commercial Constructions

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Air pressure testing is compulsory, according to Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. To get your building’s required air permeability rate, check its design-stage SAP or SBEM assessment. Excess air leakage causes heat loss, greater carbon dioxide discharge and influx of cold air.

We Offer Smoke Shaft Air Pressure Testing

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft undergoes air leakage testing when fans are placed inside it. Then the openings are sealed off in all its parts so that the shaft can be thoroughly examined. The fixing and commissioning of the auto opening vents happen after the test is completed.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

The mandate to construct well insulated and air tight buildings, has made it crucial for satisfactory, enhanced and balanced ventilation systems to be installed. We are able to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. Part F states that all new constructions must have intermittent extractor fans whose air flow rates will be calculated and the results given to Building Control before the building work is finished.

Explicit Test and Building Preparation Process

An air tightness test measures the extent of air leakage in a building. The air tightness of a building improves its energy efficiency and internal environment.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

Pre-Test

Send the drawings of your dwelling (plans and elevations) and its target air permeability requirements to our test engineers. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. In preparing the site to create an air-tight environment:

  • Shut the windows
  • Close the smoke vents
  • Open and secure all inner doors
  • Put off the mechanical vents
  • Close ventilation
  • Fill drainage traps
  • Put off range cookers/stoves a day before the test (if applicable)

How We Measure the Building Envelope

We take the building envelope calculations before the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Barrier Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Change Rate

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Cold Roof Envelope Area Measurement

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Site Test Procedure

Evaluate the weather (barometric pressure, wind speed and temperature) Fix a fan to an aperture, usually the door, in the building. Set up the testing gear. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Raise the fan speed from 20-25Pa to the highest speed of 55-60Pa. Record pressure differences across the building at each fan speed.

Air Leakage Calculation

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Leakage Testing and Compliance

A low leakage building that is properly ventilated, whether natural, hybrid or mechanical, is very beneficial. The benefits are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. The ventilation system will operate optimally Less mould will be trapped in the building fabric as a result of less moisture. Thermal comfort is enhanced because air infiltration is lower. From a single dwelling to the largest commercial development, we offer stress-free compliance measurements to Part L Building Regulations and Building Standards. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Good and Best Practice Styles

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. The regulation is focused on the conservation of fuel and power usage. Part L1A states that new dwellings should be tested for air tightness in accordance with existing regulations.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. An SAP assessor can decide which buildings can use the assumed value successfully. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Non-Dwellings and residential buildings are required to test for air leakage. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

England and Wales: Building Regulations Part L

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air pressure testers have three levels

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Air Pressure Test

Air tightness reports are issued by accredited firms that carry out air permeability tests on buildings of different sizes or complexities. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. We make sure our report has the name of the building, customer, address and tester. In the event that a building fails the test, we suggest methods of improving the building and what repairs to do on the building fabric if a retest is required.

Resources Air Tightness Checklist – Building

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.