ATTMA Licensed Air Tightness Testing in Uxbridge-Moor

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are a dedicated and approved air leakage testing service in Uxbridge-Moor and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. Other names for air tightness testing are air leakage testing and air pressure testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Air tightness testing is done to calculate the total quantity of air that escapes through cracks in the building. Such air leakage is called uncontrolled ventilation (draughts). Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. With the introduction of tougher regulations, building designs will often consider air tightness at the early stages of the construction process, ensuring attention to detail during construction to create an air-tight envelope. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

Air Leakage Explained

Air leakage occurs when air escapes through holes and gaps in a building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. Air leakage and a dwelling’s energy efficiency are intertwined. Testing is needed to verify that air tightness levels used in the building’s energy calculations align with the targets required by the law. In England and Wales, air tightness testing has been obligatory since 2006. All new dwellings and non-dwellings over 500m² are to be tested for air permeability.

What Are the Problems Air Leakage Can Cause?

When air escapes uncontrollably from a building, heat reduction occurs. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

These problems will eventually cause structural harm to the building.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


The Importance of Air Tightness Test

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. A reduction in air leakage lessens the heat needed to keep a building warm. There are also health issues associated with uncontrolled air leakage. When a building has poor levels of controlled ventilation and high levels of uncontrolled air leakage, this can cause excessive moisture and mould growth, leading to poor health. The best advice is to “Construct tightly, ventilate properly”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Your Building Needs an Air Tightness Test

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The results of the test are used in SAP and SBEM calculations, and can influence a building’s overall energy rating. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. Once every building in the residential development is not tested, the expected test result would have to be lowered by 2m3/h/m2. If 5m3/h/m2 was your target score, you must achieve 3m3/h/m2.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Business owners and home owners in Uxbridge-Moor have been helped by AF Acoustics air tightness testing. Our customers highly recommend us to other people due to the following benefits.

Helpful service and expert knowledge

Due to years of experience in conducting air tightness testing in different kinds of buildings in Uxbridge-Moor, we have the skills to meet your needs no matter the type or size of your property. We have competent and accredited air testing professionals who provide a quality, convenient service. AF Acoustics is the crew you need in Uxbridge-Moor to give you the best solutions.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

Picking a Time for Your Air Permeability Test

We want you to be able to access comprehensive air tightness testing in Uxbridge-Moor whenever you need it. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. You won’t get delays or difficulties when scheduling.

Test Certificates Get to You on the Next Day, Where Feasible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Fair Pricing

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Uxbridge-Moor.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Tests for Any Kind of building in Uxbridge-Moor

Whatever the type and size of a domestic or commercial building in Uxbridge-Moor, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Air leakage testing is required by Approved Document L1A and L2A. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and discomfort. It can also create convective loops within a building; this is often referred to as thermal bypassing and wind washing. Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. Air tightness testing is required by law for domestic buildings to ensure energy efficiency and comfort within the home environment. It is also a legal requirement that all new builds have an air tightness test carried out to meet energy efficiency standards before it can get signed off by building control in Uxbridge-Moor. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. Heating and cooling expenses are also reduced and the environment is more productive.

What Is Part L Test?

Since Approved Document L was reviewed in 2006, building regulations have demanded that new and rehabilitated constructions conduct air tightness test. Air tightness can also be called air leakage or air permeability rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. The Building Regulations (Part L) demand that a selected group of different kinds of residential constructions and all non-domestic buildings greater than 500m2 perform air leakage tests. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

What Is Part F Test?

All your Part L and Part F testing requirements can be met by us. In addition to conducting your air pressure test and extract fan flow rate testing, we can put you in contact with professionals who provide SAP calculations, Energy Performance Certificates, and water calculations.
Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. Examining, documenting and submitting reports of extract fans’ test can be done using three methods. Using a vane anemometer, our testing procedure follows Method 3 – The minimum benchmark method.


The types of Air Tightness Testing Services We Offer

Here are the descriptions of the ways air permeability can be tested: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. Air tightness testing for phased, zonal handover and LCHR constructions is done.

We Offer Air Leakage Testing of Apartments and Houses to Meet Approved Document L1 Standard

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result of the air leakage test is expressed as a quantity of air leakage (mm3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Uncontrolled ventilation can cause several problems. They are: infiltration of cold air, reduction in heat, more CO2 emission and higher energy costs.

Air Tightness Testing of Commercial Buildings to Meet Approved Document L2A Requirements

Air pressure testing involves the calculation of air escaping through the openings in a building. The test results are inscribed using m3 per hour per square metre. Air pressure testing is compulsory, according to Approved Document L2A. The results of air permeability rate should not exceed 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Excess air leakage causes heat loss, greater carbon dioxide discharge and influx of cold air.

We Offer Smoke Shaft Air Pressure Testing

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. When there is a fire, the auto opening vents play an important part in expelling smoke in multi-storey buildings. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. We’re committed to automatic opening vents builders’ target for air permeability. This enables the vents to work efficiently. An air pressure test is taken for the smoke shaft by installing a fan inside. Then the openings are sealed off in all its parts so that the shaft can be thoroughly examined. This test is conducted before the automatic opening ventilation is fixed and commissioned.

Measurement of Air Flow of Domestic Ventilation

The mandate to construct well insulated and air tight buildings, has made it crucial for satisfactory, enhanced and balanced ventilation systems to be installed. We have the capacity to test extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Part F states that all new constructions must have intermittent extractor fans whose air flow rates will be calculated and the results given to Building Control before the building work is finished.

Precise Air Pressure Test and Building Procedure

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

External claddings and the internal building finishes might obscure a gap in the building fabric. This makes it hard to notice and can results to potential air leakage. The most acceptable approach to show that a building fabric is impermeable is to identify leakage paths within it.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

What You Need to Do Before Undertaking the Test

Send the drawings of your dwelling (plans and elevations) and its target air permeability requirements to our test engineers. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. Making your building ready by ensuring it has an air tight environment will involve:

  • Shut the windows
  • Close the smoke vents
  • Open and secure all inner doors
  • Put off the mechanical vents
  • Close ventilation
  • Fill drainage traps
  • Put off range cookers/stoves a day before the test (if applicable)

How We Measure the Building Envelope

We conduct building envelope calculations prior to the test. The building envelope, is the physical barrier between the exterior and interior of a construction. The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Permeability & The Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Change Rate

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. The number of inhabitants and area of residence are used in measuring residential ventilation rates.

Measuring a Cold Roof Construction’s Envelope Area

The area of the roof and ground floor should be the same. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Warm Roof Construction Envelope Area Calculation

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Building Test Method

Check all weather conditions such as temperature, wind speed and barometric pressure. Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Fix the instrument for testing. Using the fan, measure the air flow volume, from the building fabric. Slowly raise the fan speed from 20-25Pa to 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Evaluating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Testing for Air Tightness & Meeting Part L Standards

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Lower heating bills due to less heat loss, with potentially smaller requirements for heating and cooling equipment capacities Your ventilation system will operate in a better way Your building will have less mould since moisture cannot escape into holes and cavities. Thermal comfort is enhanced because air infiltration is lower. Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. We render cost-effective services that include air leakage tests, design reappraisal, consultancy and support services for dwellings and non-dwellings in Uxbridge-Moor.


Good and Best Practice Styles

Building Regulation Part L1A 2010 stipulates that all new buildings must have low air permeability. Less fuel and power are consumed by buildings. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. They explain in detail and provide guidelines for BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. Your SAP assessor will let you know if you can do this for your building. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

Part L Building Regulations Standards for England and Wales

In January 2015, the ATTMA Scheme for Competent Air Tightness Testing Firms and Their Testers (The ATTMA Scheme) was launched. It is an industry competence scheme authorised by the government and specified in Technical Standard L1 & L2. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Air pressure testers have three levels

  • Air tightness testing for single buildings and smaller non-dwellings not more than 4000m3 is done with a fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Air Leakage Test Report

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Outcomes

Our test and subsequent results are conducted and written to meet standard requirements, highlight any deviation from the standards and crosscheck air pressure values against target values. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Go through the list below and send the design air testing permeability value to us before we get to the site.

Air Permeability Pathway Checklist – Use this checklist to make sure you are ready for the test. Ask yourself, “Have I sealed any visible opening?” Check the following appliances.

  • Junction between floor and wall under kitchens and baths
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Windows
  • Metre boxes
  • Hot water tank
  • Chimney
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Drainage traps

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.