Walthamstow-Forest Air Tightness Testing Certified by AF-Acoustics

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

Air leakage occurs through any opening in the building envelope and can affect a building’s energy performance, this has been addressed by changes to the building regulations. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. Located in Walthamstow-Forest, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. Building plans will often consider air tightness at the beginning stages of development so as to measure up to stricter building standards. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage, what Is It?

Air leakage occurs when air escapes through holes and gaps in a building. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. It leads to heat deprivation when cold draughts happen and warmth is needed the most. Because air leakage is uncontrolled ventilation, excessive air flows into the house during windy and wintry weather. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. All commercial buildings over 500m² and new buildings in England and Wales are mandated to test for air tightness and permeability, according to the 2006 Building Regulations.

What Is the Impact of Air Leakage?

Air leakage leads to a reduction in heat. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. The strength of the outer wooden covering is drastically reduced because it is wet.

Over time, any of these conditions can cause structural damage.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why Should We Do an Air Tightness test?

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. A great option would be to build tight and ventilate right. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Do I Need an Air Tightness Test?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. Selective testing has a penalty of +2m3/h/m2. If target score is 5m3/h/m2, air tightness test score will have to be 3m3/h/m2.

buildings that have not been tested are assessed for air permeability based on similar dwellings’ test scores +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

With AF Acoustics, homes and businesses in Walthamstow-Forest have been getting quality air tightness testing. We are recommended by our clients for the following reasons.

Great service and expertise

In Walthamstow-Forest, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We have competent and accredited air testing professionals who provide a quality, convenient service. AF Acoustics is the crew you need in Walthamstow-Forest to give you the best solutions.

Registered Members of the Leading Air Tightness Body in the UK

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Scheduling Your Air Tightness Testing

You can access our complete air tightness test in Walthamstow-Forest at anytime. Pick a time that is convenient for you in our responsive scheduling options. We guarantee no delays or complications regarding scheduling.

You Could Get Your Certificates on the Next Day

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Affordable Prices

AF Acoustics offers competitive fees in Walthamstow-Forest. Since we’re a small business, we offer less expensive air permeability testing and render high quality services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Tests for Any Kind of building in Walthamstow-Forest

All domestic and commercial buildings in Walthamstow-Forest can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Air tightness testing is recommended by Approved Document L1A and L2A. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Walthamstow-Forest. Clients and employees will be at ease in their surroundings. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

Part L Test Explained

Air tightness testing is a Building Regulations obligation for new buildings, commercial developments and revamped buildings. This was put into effect in 2006 after Document L was reappraised. Air tightness is referred to as air permeability or leakage rate. Although not always seen, air leakage can occur through any gap, space or crack in a building’s fabric. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test Explained

We can provide you all that you need to serve all your Part L and Part F requirements. In addition to conducting your air pressure test and extract fan flow rate testing, we can put you in contact with professionals who provide SAP calculations, Energy Performance Certificates, and water calculations.
Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Types of Air Leakage Testing Services We Offer

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. A single blower door fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Domestic Buildings Testing as Required by Approved Document L1

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Document L1A of Building Regulations declares air leakage testing to be mandatory. Your building may need a lower rate to meet the CO2 discharge target. You can find the required air permeability rate of your building in its design-stage SAP assessment SBEM. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Document L2A of Building Regulations declares air leakage testing to be mandatory. The highest air permeability rate for your dwelling when tested should be 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. You can find the required air permeability rate of your building in its design-stage SAP or SBEM assessment. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

We undertake smoke shaft integrity testing to confirm that the shaft is sufficiently air tight in order to allow the automatic opening ventilation to perform as required when it is fitted and commissioned. The automatic-opening vents are a key part of the fire strategy for multi-storey buildings to extract smoke in the case of a fire. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. An air pressure test is conducted using a fan installed in the shaft. Once the fan is fixed, the extract points and ventilation grilles on each storey are sealed to ensure that the shaft is in proper condition. Once the test is completed and successful, the automatic opening vents are installed.

We Offer Extraction Fan Testing

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We are able to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Specific Test and Building Preparation Procedure

Air tightness test determines the level of air permeability in a building. The greater the air tightness of a building, the more comfortable the occupants are and the higher its energy performance.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

What Should You Do Before Testing Your Building?

The client needs to send our test engineers the drawings of the development (plans and elevations) and target air permeability requirements. We would like to know the requirements and the building envelope’s size prior to testing. The tests take 30 – 60 minutes, and wind speed does not surpass 6m/s. In preparing the site to create an air-tight environment:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Measuring the Building’s Envelope

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Permeability & The Envelope Area

Approved Document L1A Conservation of Fuel and Power in New Dwellings (2010) defines air permeability as “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)” and envelope area as “the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.”

Air Exchange Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Measuring a Cold Roof Construction’s Envelope Area

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof has its insulation at the ceiling level, with space between the insulation and rafters.

Warm Roof Envelope Area Measurement

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Process for Testing the building

Examine the wind speed, barometric pressure and temperature. Place the fan on an aperture within the building envelope. Set up the equipment for air tightness testing. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. Record pressure differences across the building at each fan speed.

Evaluating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Testing for Air Permeability and Following Part L Building Regulations

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Better ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Best Practice Processes

Building Regulation Part L1A 2010 stipulates that all new buildings must have low air permeability. The regulation is focused on the conservation of fuel and power usage. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation for England and Wales, Part L 2010

Approved document L1A has made it compulsory for all new buildings to be tested for air leaks. Those exceptions only occur when there are two or more dwellings in a development. Three units of a dwelling type or 50% of all examples of that dwelling type should be tested. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. Find out from your SAP assessor if this is applicable to you. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air leakage testing is compulsory for residential areas and certain Non-Dwellings. Non-dwellings with a typical floor area less than 500m2 may be exempt. Where testing is not carried out, an assessed air permeability of 15 m3/h/m2 must be used in calculations.

England and Wales: Building Regulations Part L

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. The scheme echoes the conditions of the Minimum Technical Competence (MTC) and the National Occupation Standard (NOS) documents.

Air pressure testers have three levels

  • Air tightness testing for single buildings and smaller non-dwellings not more than 4000m3 is done with a fan.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report for Air Leaks Test

Accredited testing companies issue air pressure reports. Extraction fans will be sealed temporarily; the results of the test are recorded in a short report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Air Tightness Test Results

Our test and subsequent results are conducted and written to meet standard requirements, highlight any deviation from the standards and crosscheck air pressure values against target values. Clients’ test reports contain their names, construction, address; the tester’s name is also included. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Building

Before we arrive on site, ensure you have sent us the air permeability target and been through the checklist below and the ones we have sent you. This will greatly facilitate the process.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.