Wanstead-Flats Air Tightness Testing, Licensed by AF-Acoustics

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are dedicated and accredited air leakage testing service providers in Wanstead-Flats and we are available to provide you with testing services whenever required. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. If you want specialist air pressure testing services in Wanstead-Flats, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is Air Tightness Testing?

Air tightness testing involves calculating the quantity of air which escapes through holes in the building fabric. Air leakage and air pressure are also used in place of air tightness. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage, what Is It?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Is the Impact of Air Leakage?

Heat loss within a building can be caused by air leakage. During windy weather, cold air infiltrates a building through the openings in its fabric. This results in heat loss. Once there’s infiltration, exfiltration will occur in another part of the building. Warm, moist air seeps into cool cavities in the building’s fabric. The water vapour in the moist air condenses on the inner wall surface holes. After a while, it is absorbed into building materials and diffuses, causing potential structural problems. Wooden sheathing or overlay becomes wet, making it weak.

These problems will eventually cause structural harm to the building.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

The key to minimising the damage potential of moisture is effectively managing the flow of air into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. Correct ventilation, whether passive or active, ensures fresh air circulates through the building, eliminating water vapour, moist odour and polluting substances.


Why Should We Do an Air Tightness test?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. The reduction of air leakage leads to lower heat loss and quantity of heat generated in a building. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. Best practice advice is to “Build tight, ventilate right”. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Should an Air Tightness Test Be Done?

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Because selective testing does not conduct tests for all buildings, a tested building might have a much higher air tight rate than an untested building; making it unreliable. The 2m3/h/m2 penalty added to untested buildings makes the air permeability rate hard to achieve.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

AF Acoustics air tightness testing professionalism has helped many homes and business owners in Wanstead-Flats. We come highly recommended by our clients because of the following guarantees.

Helpful service and information

In Wanstead-Flats, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. Our qualified air tightness testing professionals will work around your schedule, so they fit into your project seamlessly, providing a quality service as conveniently as possible. AF Acoustics is the crew you need in Wanstead-Flats to give you the best solutions.

Registered by the Leading Air Tightness Body in UK

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

Picking a Time for Your Air Permeability Test

Our comprehensive air permeability testing in Wanstead-Flats is available. We offer responsive scheduling. Schedule for your building to be tested at your convenience. We guarantee that there will be no delays or difficulties.

Next-day Turnaround for Certificates

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Competitive Charges

AF Acoustics, a small business with low overheads, offers one of the best prices in Wanstead-Flats and guarantees professional services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in Wanstead-Flats

We can test any building in Wanstead-Flats for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. Air tightness test checks the extent of uncontrolled air moving through openings in the building envelope. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is a requirement of Approved Document L1A and L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. In order to comply with the carbon emission target, it may be necessary to achieve a lower air permeability rate. The required air permeability rate for each building can be found on the design-stage SAP assessment or SBEM for that building. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

The warm air within a building rises, leading to the influx of cold air through gap, cracks and other openings in the building envelope. The increasing difference in air pressure results in infiltration and exfiltration of air. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Wanstead-Flats. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. This increases the company’s productivity and lowers heating and cooling expenses.

Part L Test

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. Other names for air tightness are air permeability rate or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. The highest air permeability target set is 10m3/h/m2 but your building might need a much lower one. You can exceed the CO2 discharge and Building Regulations target and raise your building’s energy performance by testing for air leakage.

What Is Part F Test?

We will help you with all your Parts L and F requirements. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. There are 3 available methods for examining, recording and reporting the testing of extract fans. Use method 3 – the minimum benchmark method, which tests extractor fans with vane anemometers. This is our testing procedure.


Types of Air Leakage Testing Services We Offer

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. Level 3: Air Pressure Testing for LCHR buildings, phased and zonal handover buildings is carried out.

Domestic Buildings Testing as Required by Approved Document L1

Air tightness testing determines the extent of air leaking out a building’s envelope. The result is written as m3 per hour per square metre of building. Air leakage testing is a requirement of Approved Document L1A. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Uncontrolled ventilation can cause several problems. They are: infiltration of cold air, reduction in heat, more CO2 emission and higher energy costs.

Air Tightness Testing of Commercial Buildings to Meet Approved Document L2A Requirements

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Part L2A of Building Regulations has demanded that such tests be conducted. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. To get your building’s required air permeability rate, check its design-stage SAP or SBEM assessment. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

We Test Your Automatic Opening Vent’s Smoke Shaft

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Automatic opening vents help storey buildings dispel smoke when there is a fire. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. We’re committed to automatic opening vents builders’ target for air permeability. This enables the vents to work efficiently. The shaft undergoes air leakage testing when fans are placed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. The fixing and commissioning of the auto opening vents happen after the test is completed.

We Offer Extraction Fan Testing

The mandate to construct well insulated and air tight buildings, has made it crucial for satisfactory, enhanced and balanced ventilation systems to be installed. We test fan extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Precise Air Pressure Test and Building Procedure

Air tightness test determines the level of air permeability in a building. The air tightness of a building improves its energy efficiency and internal environment.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. The most acceptable approach to show that a building fabric is impermeable is to identify leakage paths within it.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We recommend that all buildings be tested as those that aren’t are penalised.

What You Need to Do Before Undertaking the Test

The client needs to send our test engineers the drawings of the development (plans and elevations) and target air permeability requirements. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To prepare the site for the test, do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Calculations

Before coming to the site, we get the measurement of the building’s envelope. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The building envelope calculations are taken from the drawings and used for our air tightness testing.

Envelope Area Air Permeability

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Change Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Evaluating a Cold Roof Envelope Area

The area of the roof and ground floor should be the same. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Evaluating a Warm Roof Envelope Area

In a warm roof, an air barrier is inside the insulation which runs on the pitched roof rafters. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Site Test Process

Evaluate the weather (barometric pressure, wind speed and temperature) Fix a fan to an aperture, usually the door, in the building. Ensure all the testing equipment is ready. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Raise the fan speed from 20-25Pa to the highest speed of 55-60Pa. Record pressure differences across the building at each fan speed.

Air Leakage Calculation

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Tightness Testing and Compliance

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. Better ventilation system Lower probability of mould because moist air won’t condense in the openings in the building envelope. Infiltration of air is reduced and the inhabitants are more comfortable. From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Good and Best Practice Standards

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. Less fuel and power are consumed by buildings. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. To find if your building falls into this category, contact your SAP assessor. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Non-Dwellings and residential buildings are required to test for air leakage. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

England and Wales: Building Regulations Part L

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air tightness testers can be divided into three categories

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Air Leakage Test Report

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. The report is in line with the company’s testing process set by government regulations and all relevant governing bodies.

Air Tightness Test Results

AF Acoustics will ensure the test result is written in accordance with the test standard requirements, identify any deviations from the relevant standards within the report and check air tightness against target value. The identity of the customer, tester, building and address are correctly written in our report. In the event that a building fails the test, we suggest methods of improving the building and what repairs to do on the building fabric if a retest is required.

Resources Air Tightness Checklist – Building

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.