Wapping Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. AF Acoustics certificates are certified by Air Tightness Testing and Measurement Association (ATTMA). ATTMA is an association of specialists that concentrate on promoting the best air tightness measurements and air permeability testing techniques. Located in Wapping, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What It Means

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. Air tightness testing is also known as air pressure testing or air leakage testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Air tightness testing is the recognised method used to measure total air lost through leaks in a building fabric. This is often referred to as uncontrolled ventilation (draughts). Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. Understanding this at an early stage can make a build cost-effective, of high quality, and energy efficient by minimising uncontrolled air leakage.

Air Leakage Explained

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Air leakage plays a major part in the energy efficiency of buildings, and testing is necessary as a means of demonstrating that the air tightness targets used in building energy calculations have been achieved. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Effects of Air Leakage

Air leakage leads to heat reduction. During windy or cold weather, the infiltration of uncontrolled air through cracks in a building envelope occurs, leading to heat reduction. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

The building becomes structurally damaged as time goes on.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

The most effective method of lessening the damage caused by moisture is to control the flow of air into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


The Importance of Air Tightness Test

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. The reduction of air leakage leads to lower heat loss and quantity of heat generated in a building. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. Best practice advice is to “Build tight, ventilate right”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

Recommended Period for Air Tightness Test

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why Choose AF Acoustics for Your Air Tightness Testing?

With AF Acoustics, homes and businesses in Wapping have been getting quality air tightness testing. We come highly recommended by our clients because of the following guarantees.

Service and knowledge

Having served many clients in Wapping, we have the expertise to work on any type or size of building. We have competent and accredited air testing professionals who provide a quality, convenient service. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Wapping.

Registered Members of the Leading Air Tightness Body in the UK

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Picking a Time for Your Air Permeability Test

We want you to be able to access comprehensive air tightness testing in Wapping whenever you need it. Pick a time that is convenient for you in our responsive scheduling options. You won’t get delays or difficulties when scheduling.

Quick Turnaround on Test Certificates Where Possible

AF Acoustics has professional speedy services to satisfy clients who want their test results immediately. We have a next day turnaround policy for our test certificates and endeavour to deliver in all situations.

Fair Pricing

AF Acoustics offers competitive fees in Wapping. Since we’re a small business, we offer less expensive air permeability testing and render high quality services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Wapping

Whatever the type and size of a domestic or commercial building in Wapping, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Approved Document L1A and L2A demands that buildings take tests for air leaks. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Wapping. With air leakage tests, business areas are more comfortable for employees and customers. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

The Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Other names for air tightness are air permeability rate or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

The Part F Test

All your Part L and Part F testing requirements can be met by us. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. Examining, documenting and submitting reports of extract fans’ test can be done using three methods. Use method 3 – the minimum benchmark method, which tests extractor fans with vane anemometers. This is our testing procedure.


What Kinds of Air Tightness Testing Services Do We Offer?

The size, type and multifaceted parts of a building determine the level of air pressure testing it will receive. There are 3 levels and they are listed below. A single blower door fan is used for air tightness testing for single buildings and smaller non-dwellings not more than 4000m3. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Too much air leakage leads to heat loss which can lead to draughts and higher energy bills.

Commercial Building Testing as Required by Approved Document L2A

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Air pressure testing is compulsory, according to Approved Document L2A. The results of air permeability rate should not exceed 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Automatic opening vents help storey buildings dispel smoke when there is a fire. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. An air pressure test is taken for the smoke shaft by installing a fan inside. Once the fan is fixed, the extract points and ventilation grilles on each storey are sealed to ensure that the shaft is in proper condition. Once the test is completed and successful, the automatic opening vents are installed.

Domestic Ventilation Air Flow Testing (Extract Fans)

Buildings that are well insulated and air tight are the standard for buildings. As a result, a high-quality ventilation system that is adequate and performs as required is vital. We evaluate extraction rates. It is important to ensure the ventilation strategy is working effectively. This helps to remove pollutants from the air and control excess humidity, particularly in rooms such as bathrooms and kitchens. Another of such targets, as stated by Part F, is to have the standard intermittent extractor fans, like kitchen and bathroom extractors, in new constructions measured for air flow and results given to Building Control before the construction work is completed.

Explicit Test and Building Preparation Process

Air tightness test determines the level of air permeability in a building. When air leakage is reduced in a building, the occupants will not experience discomfort and the energy performance will increase.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. The best solution to demonstrate a building’s air tightness level is to check for leakage paths in the building envelope.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. Buildings that don’t undergo the test are penalised. All dwellings in a development should be tested to ensure optimum air tightness.

What You Need to Do Before Undertaking the Test

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. We would like to know the requirements and the building envelope’s size prior to testing. The tests take 30 – 60 minutes, and wind speed does not surpass 6m/s. In preparing the site to create an air-tight environment:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Building Envelope Calculations

We conduct building envelope calculations prior to the test. A building envelope is the boundary between the conditioned and unconditioned environment of a building. The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Permeability from the Envelope Area

Approved Document L1A Conservation of Fuel and Power in New Dwellings (2010) defines air permeability as “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)” and envelope area as “the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.”

Air Change Rate

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Calculating the Envelope Area of a Cold Roof

This is essential to determine if the roof area is the same as the ground floor area. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Calculating the Envelope Area of a Warm Roof

In a warm roof, the main insulation is placed below the roof covering. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Building Test Method

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan to an aperture within the construction envelope. For example, the door. Set up the equipment for air tightness testing. Record the air volume flow passing through the fan. Gradually increase the speed of the fan to a maximum of 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Air Leakage Calculation

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Air Leakage Testing and Compliance

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. The ventilation system will operate optimally Reduced chance of mould and rot, as moisture is less likely to become trapped Fewer draughts, causing more comfort Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. Our services include: air pressure testing, support services, re-examining designs and consultancy for all buildings in Wapping. We are cost effective and adhere to all building regulations.


Good and Best Practice Styles

Building Regulation Part L1A 2010 stipulates that all new buildings must have low air permeability. The regulation is focused on the conservation of fuel and power usage. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

Approved document L1A has made it compulsory for all new buildings to be tested for air leaks. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. Your SAP assessor will be able to confirm if this is the case for your dwelling. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Both residential areas and many non-Dwellings are to take the air leakage test. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

Part L Building Regulations Standards for England and Wales

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

There are three levels of testers:

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • Level Three: Testing for the air pressure of high rise (LCHR) buildings, phased handover/zonal buildings and other complex buildings is carried out by level three experts.

Report on Test for Air Permeability

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. The report is in line with the company’s testing process set by government regulations and all relevant governing bodies.

Air Tightness Test Results

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. We make sure our report has the name of the building, customer, address and tester. Where applicable, we will identify pass or failure of your building and provide recommendations for any remedial action or improvement to the building if any further testing is required.

Resources Air Tightness Checklist – Dwelling

Before we arrive on site, ensure you have sent us the air permeability target and been through the checklist below and the ones we have sent you. This will greatly facilitate the process.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.