Willesden Air Tightness Testing Certified by AF-Acoustics

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Air leakage occurs through any opening in the building envelope and can affect a building’s energy performance, this has been addressed by changes to the building regulations. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. Located in Willesden, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What It Means

Air tightness testing involves calculating the quantity of air which escapes through holes in the building fabric. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage, also known as infiltration or draught, allows air to pass through unwanted leaks in a building; unlike ventilation where the air inside and outside of a building and its flow from one end to the other is controlled. Air tightness testing is the recognised method used to measure total air lost through leaks in a building fabric. This is often referred to as uncontrolled ventilation (draughts). Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. With air tightness testing, you can determine whether or not air is leaking from a building’s envelope, the build quality and energy efficiency of new developments. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. Understanding this at an early stage can make a build cost-effective, of high quality, and energy efficient by minimising uncontrolled air leakage.

Air Leakage

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. All commercial buildings over 500m² and new buildings in England and Wales are mandated to test for air tightness and permeability, according to the 2006 Building Regulations.

Air Leakage’s Resulting Outcomes

Heat loss within a building can be caused by air leakage. During windy or cold weather, the infiltration of uncontrolled air through cracks in a building envelope occurs, leading to heat reduction. Once there’s infiltration, exfiltration will occur in another part of the building. Warm, moist air seeps into cool cavities in the building’s fabric. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. Wooden sheathing or overlay becomes wet, making it weak.

As the years go by, these conditions can result in structural damage.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

These effects can be mitigated by controlling the circulation of air into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why Should We Do an Air Tightness test?

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. To “Construct tight, ventilate right” is the best practice. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Is an Air Tightness Test Needed?

It is best practice to complete an air tightness test early on and then again at the final stage. The test results are used in SAP and SBEM calculations, this impacts the energy rating of new building. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why AF Acoustics Is the Right Choice for Your Air Tightness Testing

AF Acoustics air tightness testing professionalism has helped many homes and business owners in Willesden. Our clients highly recommend us for the following reasons.

Helpful service and information

Due to years of experience in conducting air tightness testing in different kinds of buildings in Willesden, we have the skills to meet your needs no matter the type or size of your property. Our qualified air tightness testing professionals will work around your schedule, so they fit into your project seamlessly, providing a quality service as conveniently as possible. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Willesden –the right team for your building.

We Are Registered Members of the Air Tightness Testing and Measurement Association (ATTMA)

AF Acoustics is a member of ATTMA, an association of specialists that concentrates on promoting the best air tightness measurements and air permeability testing techniques. It is the leading air permeability testing body in the UK and has recognised our competence and services.

When to Call Us to Test Your Building

We would like to give your building in Willesden a thorough air leakage test whenever it is needed. Pick a time that is convenient for you in our responsive scheduling options. There won’t be delays or complications once you’ve fixed a time.

Quick Turnaround on Test Certificates Where Possible

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Affordable Fees

At AF Acoustics, we offer the most competitive prices in Willesden to ensure you have access to affordable air tightness testing when you need it. We keep the costs down, as we are a small business with low overheads. This allows us to be competitive with our pricing whilst guaranteeing a professional service.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Willesden

Whatever the type and size of a domestic or commercial building in Willesden, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. Air tightness test checks the extent of uncontrolled air moving through openings in the building envelope. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Approved Document L1A and L2A requires that buildings know their air permeability rates by taking the air leakage test. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by the difference in air pressure inside and outside the building. Lower pressure occurs as warm air rises and brings air inside through any available opening. Air permeability testing is a legal requirement for constructions in Willesden. This way, they can have high energy performance, meet building regulations requirements and get signed off by building control. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

What Is Part L Test?

Air tightness testing is a Building Regulations obligation for new buildings, commercial developments and revamped buildings. This was put into effect in 2006 after Document L was reappraised. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

What Is Part F Test?

We can provide you all that you need to serve all your Part L and Part F requirements. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


The types of Air Tightness Testing Services We Offer

Here are the descriptions of the ways air permeability can be tested: A single blower door fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Air leakage testing is a requirement of Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Air tightness testing is required by Building Regulations. The highest air permeability rate for your dwelling when tested should be 10m3/h/m2. Your building may need a lower air permeability rate to meet the SAP or SBEM assessment. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and draught.

Air Leakage Test of Smoke Shafts for Auto Vents

We undertake smoke shaft integrity testing to confirm that the shaft is sufficiently air tight in order to allow the automatic opening ventilation to perform as required when it is fitted and commissioned. The automatic-opening vents are a key part of the fire strategy for multi-storey buildings to extract smoke in the case of a fire. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. An air pressure test is conducted using a fan installed in the shaft. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. The fixing and commissioning of the auto opening vents happen after the test is completed.

Domestic Ventilation Air Flow Testing (Extract Fans)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. We test fan extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Part F states that all new constructions must have intermittent extractor fans whose air flow rates will be calculated and the results given to Building Control before the building work is finished.

Specific Test and Building Preparation Procedure

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. The air tightness of a building improves its energy efficiency and internal environment.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. We recommend that all buildings be tested as those that aren’t are penalised.

What You Need to Do Before Undertaking the Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. The test engineers would like to have the information needed for the test before coming to your development. Our air leakage test is done between 30 and 60 minutes, and the wind speed is a maximum of 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

Building Envelope Calculations

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Envelope Area Air Permeability

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Evaluating a Cold Roof Envelope Area

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Warm Roof Envelope Area Measurement

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Building Test Method

Check all weather conditions such as temperature, wind speed and barometric pressure. Connect a fan to an aperture within the construction envelope. For example, the door. Set up the testing gear. Record the air volume flow passing through the fan. Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. Record pressure differences across the building at each fan speed.

Calculating Air Leakage

We analyse the air tightness test data, point out any air leakage path and send a report to clients. If the building fails the test, we suggest remedial measures to the client. Air Pressure Testing & Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: Lower energy costs and need for heating appliances due to a higher level of heat retention. The ventilation system will operate optimally Your building will have less mould since moisture cannot escape into holes and cavities. You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Best Practice Procedures

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. To find if your building falls into this category, contact your SAP assessor. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Air leakage testing is compulsory for residential areas and certain Non-Dwellings. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

England and Wales: Building Regulations Part L

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Testers can be divided into three types

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • Level 2: Testers can test all buildings except large, complex and or high-rise buildings and or phased handover or zonal buildings unless part of a team managed by a level 3 tester.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Air Tightness Test Report

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The report adheres to the company’s methods and all standards and requirements of Building Regulations.

Air Tightness Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. Our reports correctly note the client, air tightness tester, building and address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.