Woolwich Air Tightness Testing, Licensed by AF-Acoustics

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. AF Acoustics, a licensed air tightness testing company, is available to provide testing services at your request. Our address is Woolwich. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. If you want specialist air pressure testing services in Woolwich, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our customers get greater value for money spent, and our testing services are of superior quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. Air leakage and air pressure are also used in place of air tightness. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

What Is Air Leakage?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. Air leakage plays a major part in the energy efficiency of buildings, and testing is necessary as a means of demonstrating that the air tightness targets used in building energy calculations have been achieved. In 2006, air tightness of newly constructed buildings and non-dwellings with a floor area over 500m² became compulsory in England and Wales.

Air Leakage’s Resulting Outcomes

When air escapes uncontrollably from a building, heat reduction occurs. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. The strength of the outer wooden covering is drastically reduced because it is wet.

These problems will eventually cause structural harm to the building.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why You Should Conduct an Air Tightness Test

Climate change caused by carbon dioxide emission is an environmental hazard that government is trying to curb. Energy performance and air tightness is a key part of this plan. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. When air leakage is controlled, heat loss and energy used by the heating system are reduced. There are also health issues associated with uncontrolled air leakage. When a building has poor levels of controlled ventilation and high levels of uncontrolled air leakage, this can cause excessive moisture and mould growth, leading to poor health. The best advice is to “Construct tightly, ventilate properly”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Do I Need an Air Tightness Test?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The results of the test are used in SAP and SBEM calculations, and can influence a building’s overall energy rating. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

Where the dwelling has not been pressure tested, the assessed air permeability is the average test result obtained from other dwellings of the same dwelling type on the development, increased by +2.0 m3/h/m2 at 50 Pa. This type of testing does not reveal the exact air tightness of each residence and is therefore not advisable. Moreover, the penalty implemented on untested buildings makes the required air permeability rate difficult to attain.

Why AF Acoustics Is the Right Choice for Your Air Tightness Testing

At AF Acoustics, our air tightness testing expertise has helped many home and business owners in Woolwich. We come highly recommended by our clients because of the following guarantees.

Helpful service and expert knowledge

In Woolwich, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We’ll work with you to carry out our tests and consultations at times that are convenient to you, delivering an exceptional quality, convenient service. Do you need trustworthy professionals who will provide great results in Woolwich? Contact AF Acoustics today.

Registered Members of the Leading Air Tightness Body in the UK

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Responsive scheduling

We would like to give your building in Woolwich a thorough air leakage test whenever it is needed. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. You won’t get delays or difficulties when scheduling.

Test Certificates Get to You on the Next Day, Where Feasible

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Fair Pricing

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Woolwich at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Tests for Any Kind of building in Woolwich

Whatever the type and size of a domestic or commercial building in Woolwich, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Approved Document L1A and L2A demands that buildings take tests for air leaks. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Woolwich. For commercial constructions, air pressure tests result in a better environment for workers and customers. The company also gets reduced heating and cooling costs and higher productivity rates.

The Part L Test

Air tightness testing is a Building Regulations obligation for new buildings, commercial developments and revamped buildings. This was put into effect in 2006 after Document L was reappraised. Air tightness is also called air leakage rate or ‘air permeability’ rate. Although not always seen, air leakage can occur through any gap, space or crack in a building’s fabric. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air leakage is vital to a building’s energy efficiency and is needed to meet Building Regulations Part L and carbon emission standards.

What Is Part F Test?

We will ensure that you exceed all the Parts L and F standards. We deliver quality air permeability and extract fan flow rate testing, and also recommend skilled experts who will handle your water calculations, SAP calculations and Energy Performance Certificates.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Evidence of this test must be passed to the Building Control Body (BCB) as part of their sign-off procedure. There are 3 available methods for examining, recording and reporting the testing of extract fans. AF Acoustics employs the minimum benchmark procedure (method 3), which involves using a vane anemometer.


Different Ways We Test for Air Permeability

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. Air tightness testing for phased, zonal handover and LCHR constructions is done.

We Offer Air Leakage Testing of Apartments and Houses to Meet Approved Document L1 Standard

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air tightness testing is required for new builds. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

Air tightness testing determines the extent of air leaking from a building’s envelope. The test results are inscribed using m3 per hour per square metre. Air tightness testing is required by Building Regulations. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Uncontrolled air leakage can cause several problems. They are: infiltration of cold air, discomfort, reduction in heat, and higher CO2 emission rate.

We Offer Smoke Shaft Air Pressure Testing

We undertake smoke shaft integrity testing to confirm that the shaft is sufficiently air tight in order to allow the automatic opening ventilation to perform as required when it is fitted and commissioned. Automatic opening vents help storey buildings dispel smoke when there is a fire. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. The shaft undergoes air leakage testing when fans are placed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. The fixing and commissioning of the auto opening vents happen after the test is completed.

Testing Extraction Fans for Air Flow

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We have the capacity to test extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Air Tightness Test and Building Preparation Method

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. The greater the air tightness of a building, the more comfortable the occupants are and the higher its energy performance.

Causes of excess air leakage are often hard to detect. These openings might not be seen because of the internal finishes that have been fixed. If you know the leakage paths of a building, you will know if it is air tight.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. We recommend that all buildings be tested as those that aren’t are penalised.

Pre-Test

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Building Envelope Measurement

We take the building envelope calculations before the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Permeability of the Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Changes Per Hour

Air exchange rate is vital to ventilation design but it isn’t used as the determinant of the actual design or calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Cold Roof Construction Envelope Area Calculation

Measuring if the roof area and ground floor area of a building are the same is vital. A cold roof is the kind of roof where the insulation is fixed in the ceiling joists with space between the insulation and roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof is a roof where the insulation is installed on top of the roof structure. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Building Preparation

  • Turning off mechanical vents
  • Shutting all windows and internal doors
  • Temporarily seal vents and smoke vents
  • Filling the drainage stops

Site Test Procedure

Evaluate the weather (barometric pressure, wind speed and temperature) Connect a fan to an opening, like the door, in the building fabric. Set up the testing gear. Calculate the air flow volume through the fan which equates to the air leakage. Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Evaluating Air Leakage

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Testing for Air Permeability and Following Part L Building Regulations

A low leakage building that is properly ventilated, whether natural, hybrid or mechanical, is very beneficial. The benefits are: Lower heating bills due to less heat loss, with potentially smaller requirements for heating and cooling equipment capacities A functional ventilation system Less mould will be trapped in the building fabric as a result of less moisture. You won’t experience much discomfort because there will be fewer draughts. Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. We render cost-effective services that include air leakage tests, design reappraisal, consultancy and support services for dwellings and non-dwellings in Woolwich.


Good and Best Practice Styles

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. The regulation is focused on the conservation of fuel and power usage. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Testing for Air Permeability on Building Fabrics, According to L1 Technical Standard.

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Requirements Part L 2010 (England and Wales)

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. An SAP assessor can decide which buildings can use the assumed value successfully. A testing procedure required by Building Regulations is expressed in ATTMA TSL1 for dwellings and ATTMA TSL2 for non-dwellings. Air leakage testing is compulsory for residential areas and certain Non-Dwellings. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

Building Regulations Part L (England And Wales)

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Air pressure testers have three levels

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Report for Air Leaks Test

Air tightness reports are issued by accredited firms that carry out air permeability tests on buildings of different sizes or complexities. Extraction fans will be sealed temporarily; the results of the test are recorded in a short report. The report adheres to the company’s methods and all standards and requirements of Building Regulations.

Air Tightness Test Results

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. The identity of the customer, tester, building and address are correctly written in our report. We will state if your building has passed or failed the test and give advice on the actions you need to take if another test is needed.

Resources Air Tightness Checklist – Dwelling

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Leakage Pathway Checklist – Check will be done for visible leaks in the following places:

  • Windows: Check the seal beneath the sills and around the frames.
  • Doors: Check the seal around all external door surrounds (especially French doors).
  • Drainage traps: Check if they are filled with water.
  • Skirting and coving: Check above and below all skirting and coving, sealing where necessary.
  • Metre Boxes: Check all external supplies are sealed appropriately.
  • Light Fittings: Check the seal around all light fittings and switches.
  • Radiators / Fans / Heaters: Check the seal around all pipes and wires.
  • Boilers: Check the seal around the boiler supply and flue.
  • Extractor Fans: Check around the edge of the extracts, only the front of the grill can be sealed.
  • Cooker Hoods: Check the seals around all penetrations.
  • Soil pipes: Check the seal around all soil pipes and sink waste pipes especially those boxed in or behind kitchen cabinets.
  • Bath Panels: Check if all pipes behind bath panels are sealed properly.
  • Hot water tank: Check the seal around all supply pipes.
  • MVHR: Check seal around all terminals.
  • Chimneys: Open fireplaces must be sealed prior to our arrival.
  • Tumble drier extracts: Check the seal around the extract.
  • Junction between floor and wall under kitchens and baths

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.