Haslemere Air Tightness Testing Certified by AF-Acoustics

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. In 2006, Approved Document L was reviewed and building regulations for air permeability became more stringent. The test is presently a requirement for new buildings and reconstructions.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our Air Tightness Testing certificates are registered with Air Tightness Testing and Measurement Association (ATTMA), a professional association dedicated to promoting technical excellence in all air tightness testing and air leakage measurement applications. We are a dedicated and approved air leakage testing service in Haslemere and we can provide air permeability measurement whenever you require. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. With air tightness testing, you can determine whether or not air is leaking from a building’s envelope, the build quality and energy efficiency of new developments. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

What Is Air Leakage?

This occurs when openings in a building lead to excess air flow into and out of the building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. In England and Wales, air tightness testing has been obligatory since 2006. All new dwellings and non-dwellings over 500m² are to be tested for air permeability.

Effects of Air Leakage

Air leakage causes heat loss. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. Wooden sheathing or overlay becomes wet, making it weak.

As the years go by, these conditions can result in structural damage.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

The most effective method of lessening the damage caused by moisture is to control the flow of air into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


The Importance of Air Tightness Test

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Environmental change caused by carbon dioxide emissions and global warming is partly aided by the burning of fossil fuels to generate heat. A reduction in air leakage lessens the heat needed to keep a building warm. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. To “Construct tight, ventilate right” is the best practice. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Is an Air Tightness Test Needed?

It is best practice to complete an air tightness test early on and then again at the final stage. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. It’s better to test each property because selective testing does not give a realistic picture of individual buildings. Besides, air permeability rates are difficult to achieve for untested buildings in such areas due to the +2m3/h/m2 penalty.

Why Pick AF Acoustics for Your Air Tightness Testing?

Business owners and home owners in Haslemere have been helped by AF Acoustics air tightness testing. Our customers highly recommend us to other people due to the following benefits.

Great service and expertise

In Haslemere, we have served many clients. The experience garnered from our years of service will help us meet your specific needs no matter the size or type of property. We’ll work with you to carry out our tests and consultations at times that are convenient to you, delivering an exceptional quality, convenient service. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Haslemere.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

When Can You Call Us to Test Your Building?

We want you to be able to access comprehensive air tightness testing in Haslemere whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. We won’t make you wait or make the process complicated.

Next-day Turnaround on Test Certificate Where Possible

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Fair Pricing

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Haslemere at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

We Conduct Tests for All Types of Buildings in Haslemere

Whatever the type and size of a domestic or commercial building in Haslemere, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. The best way to determine how much air seeps through a building’s fabric is through air permeability testing. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Approved Document L1A and L2A requires that buildings know their air permeability rates by taking the air leakage test. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. The warm air within a building rises, leading to the influx of cold air through gap, cracks and other openings in the building envelope. The increasing difference in air pressure results in infiltration and exfiltration of air. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Haslemere. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. This increases the company’s productivity and lowers heating and cooling expenses.

The Part L Test

Since Approved Document L was reviewed in 2006, building regulations have demanded that new and rehabilitated constructions conduct air tightness test. Air tightness is referred to as air permeability or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

The Part F Test

All your Part L and Part F testing requirements can be met by us. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. Using a vane anemometer, our testing procedure follows Method 3 – The minimum benchmark method.


The types of Air Tightness Testing Services We Offer

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Level 2: Air pressure testing for simple and complex buildings larger than 4000 m³ gross envelope volume which does not include large and complex, high rise (LCHR) buildings, and phased handover/zonal buildings. Level 3: Air Pressure Testing for LCHR buildings, phased and zonal handover buildings is carried out.

Domestic Buildings Testing as Required by Approved Document L1

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3 per hour per square metre of building. Air tightness testing is required for new builds. A building has to achieve a lower rate to meet the carbon dioxide emission target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air pressure testing involves the calculation of air escaping through the openings in a building. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Part L2A of Building Regulations has demanded that such tests be conducted. The results of air permeability rate should not exceed 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. Excess air leakage causes heat loss, greater carbon dioxide discharge and influx of cold air.

Testing the Smoke Shaft of Automatic Opening Vents

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. To ensure that automatic opening ventilations work properly, their manufacturers have placed an air permeability target for them which we work towards. An air pressure test is taken for the smoke shaft by installing a fan inside. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Domestic Ventilation Air Flow Testing (Extract Fans)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. We evaluate extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Air Tightness Test and Building Preparation Method

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. The greater the air tightness of a building, the more comfortable the occupants are and the higher its energy performance.

Gaps and cracks in the building that cause air leakage are often difficult to detect. They may be obscured by the internal building finishes. If you know the leakage paths of a building, you will know if it is air tight.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We recommend that all buildings be tested as those that aren’t are penalised.

What You Need to Do Before Undertaking the Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. In preparing the site to create an air-tight environment:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Measuring the Building’s Envelope

Before coming to the site, we get the measurement of the building’s envelope. The building envelope is the surface area of the thermal boundary of the building. The building envelope calculations are taken from the drawings and used for our air tightness testing.

Air Permeability of the Envelope Area

Approved Document L1A Conservation of Fuel and Power in New Dwellings (2010) defines air permeability as “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)” and envelope area as “the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.”

Air Exchange Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Calculating the Envelope Area of a Cold Roof

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof is a roof where the insulation is installed on top of the roof structure. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Process for Testing the building

Examine the wind speed, barometric pressure and temperature. Connect a fan to an opening, like the door, in the building fabric. Ensure all the testing equipment is ready. Record the air volume flow passing through the fan. Increase the speed of the fan slowly till it gets to 55-60Pa. The pressure differences in the building at each fan speed should be calculated.

Air Leakage Measurement

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Leakage Testing and Compliance

The positive effects of an air tight building with efficient ventilation (natural, mechanical or a combination) cannot be underestimated. Here they are: The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. The ventilation system will operate optimally Lower levels of mould due to less moisture collecting in gaps and cavities. Fewer draughts, causing more comfort From a single dwelling to the largest commercial development, we offer stress-free compliance measurements to Part L Building Regulations and Building Standards. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Best Practice Procedures

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

Undergoing an air tightness test is compulsory for your new building, according to Part L of Building Regulations. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. To find if your building falls into this category, contact your SAP assessor. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Non-Dwellings and residential buildings are required to test for air leakage. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

Building Regulation Requirements Part L (England and Wales)

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

There are three levels of testers:

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • Level 2: Testers can test all buildings except large, complex and or high-rise buildings and or phased handover or zonal buildings unless part of a team managed by a level 3 tester.
  • Level Three: Testing for the air pressure of high rise (LCHR) buildings, phased handover/zonal buildings and other complex buildings is carried out by level three experts.

Air Pressure Test

Accredited testing companies issue air pressure reports. Temporary sealing of extraction units will be done by the tester; all test results will be noted, and a shortened form report will be written which will include the findings of the test. The organisation makes sure the report meets the company and government’s requirements.

Outcome of Air Leak Test

Our test and subsequent results are conducted and written to meet standard requirements, highlight any deviation from the standards and crosscheck air pressure values against target values. We make sure our report has the name of the building, customer, address and tester. In the event that a building fails the test, we suggest methods of improving the building and what repairs to do on the building fabric if a retest is required.

Resources Air Tightness Checklist – Dwelling

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Permeability Pathway Checklist – Use this checklist to make sure you are ready for the test. Ask yourself, “Have I sealed any visible opening?” Check the following appliances.

  • Junction between floor and wall under kitchens and baths
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Windows
  • Metre boxes
  • Hot water tank
  • Chimney
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Drainage traps

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.