ATTMA Licensed Air Tightness Testing in Southwick

Air tightness testing determines the quantity of air coming out of cracks in a building. It is also known as air permeability testing or air leakage testing. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. AF Acoustics certificates are certified by Air Tightness Testing and Measurement Association (ATTMA). ATTMA is an association of specialists that concentrate on promoting the best air tightness measurements and air permeability testing techniques. We are dedicated and accredited air leakage testing service providers in Southwick and we are available to provide you with testing services whenever required. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

As registered members of the Air Tightness Testing and Measurement Association, our air leakage test certificate is accepted as evidence for Building Regulations sign-off. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. It is sometimes referred to as air leakage testing or air pressure testing. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. Incorporating this at the beginning of the construction process makes the development more cost effective and energy efficient.

What Air Leakage Is

Air leakage occurs when air escapes through holes and gaps in a building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

Air Leakage’s Resulting Outcomes

Heat loss within a building can be caused by air leakage. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. As cold seeps inside, warm moist air escapes through the cracks and gaps in the building. Some of it settles within the building’s fabric. The warm air is filled with moisture, which hits the inner wall surface and condenses. Moisture is sucked into the building material, and this can lead to serious structural issues. Wet wooden overlay or framing can decay, decreasing its durability.

Over time, any of these conditions can cause structural damage.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

These effects can be mitigated by controlling the circulation of air into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why You Should Conduct an Air Tightness Test

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. When air leakage is controlled, heat loss and energy used by the heating system are reduced. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. A great option would be to build tight and ventilate right. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Do I Need an Air Tightness Test?

A building should ideally be air tightness tested early in the construction process and again at the end of the building project, although sometimes only the final check is carried out. The results of the test can affect a building’s energy ratings because they play a part in SBEM and SAP calculations. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. With selective testing there is a penalty of +2m3/h/m2; if the target score is 5 m3/h/m2 and selective testing was applied, the air tightness test would have to achieve a lower score of 3.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Southwick. Our customers highly recommend us to other people due to the following benefits.

Helpful service and expert knowledge

Due to years of experience in conducting air tightness testing in different kinds of buildings in Southwick, we have the skills to meet your needs no matter the type or size of your property. Our accredited air testing experts are polite and competent. They are trained to provide the service you need and fit around your project. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Southwick –the right team for your building.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

When to Call Us to Test Your Building

We want you to be able to access comprehensive air tightness testing in Southwick whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. We guarantee no delays or complications regarding scheduling.

You Could Get Your Certificates on the Next Day

AF Acoustics offers trustworthy and expert services. We know that clients want to receive their test results quickly. As a result, we endeavour to deliver test certificates by the next day.

Affordable Fees

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Southwick.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Southwick

Whatever the type and size of a domestic or commercial building in Southwick, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Air tightness testing is recommended by Approved Document L1A and L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. In order to comply with the carbon emission target, it may be necessary to achieve a lower air permeability rate. The required air permeability rate for each building can be found on the design-stage SAP assessment or SBEM for that building. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Southwick. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. The company also gets reduced heating and cooling costs and higher productivity rates.

A Description of Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. The highest air permeability target set is 10m3/h/m2 but your building might need a much lower one. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

What Is Part F Test?

We will ensure that you exceed all the Parts L and F standards. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. The Building Control Body (BCB) has to see the results of the test as part of its sign-off procedure. You can test, document and report the test of your building’s extractor fans in three ways. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Forms of Air Pressure Testing Services We Provide

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: A single blower door fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

The measurement of air emitted by a building is tested to determine air permeability rating. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Document L1A of Building Regulations declares air leakage testing to be mandatory. Your building may need a lower rate to meet the CO2 discharge target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Too much air leakage leads to heat loss which can lead to draughts and higher energy bills.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are inscribed using m3 per hour per square metre. Air pressure testing is compulsory, according to Approved Document L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

Smoke shaft needs to be tested because its air tightness determines the performance of the automatic opening vent fitted on it. Our professionals perform the test. Automatic opening vents help storey buildings dispel smoke when there is a fire. For the vents and fans to operate at the expected level, the smoke shaft must be air tight to create a difference in air pressure and give emergency services when needed. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. The shaft undergoes air leakage testing when fans are placed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

We Offer Extraction Fan Testing

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We are able to test extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Precise Air Pressure Test and Building Procedure

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. If you know the leakage paths of a building, you will know if it is air tight.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. Buildings that don’t undergo the test are penalised. All dwellings in a development should be tested to ensure optimum air tightness.

Pre-Test Requirements

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. To prepare the site for the test, do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Calculations

We take the building envelope calculations before the test. The building envelope is the surface area of the thermal boundary of the building. The calculations, which are extracted from the drawings, are fed into our estimations when testing your building for air leaks.

Air Permeability from the Envelope Area

Approved Document L1A Conservation of Fuel and Power in New Dwellings (2010) defines air permeability as “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)” and envelope area as “the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.”

Air Change Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Evaluating a Cold Roof Envelope Area

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

How the Test Is Done

Examine the wind speed, barometric pressure and temperature. Place the fan on an aperture within the building envelope. Fix the instrument for testing. Using the fan, measure the air flow volume, from the building fabric. Gradually increase the fan speed from 20-25 Pa to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Measuring air leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Testing for Air Permeability and Following Part L Building Regulations

A low leakage building that is properly ventilated, whether natural, hybrid or mechanical, is very beneficial. The benefits are: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Your ventilation system will operate in a better way Lower levels of mould due to less moisture collecting in gaps and cavities. You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. They also ensure that you spend less money. Here are the services we provide:

  • Air tightness test
  • Consultancy
  • Design reappraisal
  • Support services

Best Practice Procedures

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. An SAP assessor can decide which buildings can use the assumed value successfully. A testing procedure required by Building Regulations is expressed in ATTMA TSL1 for dwellings and ATTMA TSL2 for non-dwellings. Non-Dwellings and residential buildings are required to test for air leakage. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Building Regulation Requirements Part L (England and Wales)

In January 2015, the ATTMA Scheme for Competent Air Tightness Testing Firms and Their Testers (The ATTMA Scheme) was launched. It is an industry competence scheme authorised by the government and specified in Technical Standard L1 & L2. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

There are three levels of testers:

  • Level 1: Testers can test dwellings and non-dwellings up to 4000m3 gross envelope volume when tested as a single entity, with a single fan.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • Air tightness testing for phased, zonal handover, LCHR and multifaceted constructions is carried out by level three experts.

Air Pressure Test

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. This is done according to the testing organisation’s procedures and Building Regulation standards.

Test Outcomes

We analyse our tests and results for any divergence from the standards required and check the air pressure rate against target rate. That way, our results are expressed in line with test standards. We make sure our report has the name of the building, customer, address and tester. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Before we arrive on site, ensure you have sent us the air permeability target and been through the checklist below and the ones we have sent you. This will greatly facilitate the process.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.