East Sussex Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. In 2006, Approved Document L was reviewed and building regulations for air permeability became more stringent. The test is presently a requirement for new buildings and reconstructions.

Air leakage occurs through any opening in the building envelope and can affect a building’s energy performance, this has been addressed by changes to the building regulations. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are dedicated and accredited air leakage testing service providers in East Sussex and we are available to provide you with testing services whenever required. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. If you want specialist air pressure testing services in East Sussex, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our customers get greater value for money spent, and our testing services are of superior quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing evaluates the complete air leakage a building has in every gap available. The air leakage is known as uncontrolled ventilation. Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. As Government strives to reduce CO2 emissions from new buildings, building regulations now place greater emphasis on reducing air leakage from the building envelope. This reduces fuel consumption and CO2 emissions. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. With the introduction of tougher regulations, building designs will often consider air tightness at the early stages of the construction process, ensuring attention to detail during construction to create an air-tight envelope. Understanding this at an early stage can make a build cost-effective, of high quality, and energy efficient by minimising uncontrolled air leakage.

What Air Leakage Is

Air leakage is where air enters and leaves a building uncontrollably through cracks and holes in the building fabric. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. It leads to heat deprivation when cold draughts happen and warmth is needed the most. Because air leakage is uncontrolled ventilation, excessive air flows into the house during windy and wintry weather. Air leakage and a dwelling’s energy efficiency are intertwined. Testing is needed to verify that air tightness levels used in the building’s energy calculations align with the targets required by the law. In England and Wales, air tightness testing has been obligatory since 2006. All new dwellings and non-dwellings over 500m² are to be tested for air permeability.

What Is the Impact of Air Leakage?

Air leakage leads to heat reduction. Once the atmosphere is cold and windy, unwanted chilly air infiltrates the building through gaps, leading to heat reduction. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

Over the years, these problems can damage the building’s structure.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. An adequately installed air barrier reduces air leakage and condensation of water vapour on inner wall layers. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why Should We Do an Air Tightness test?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. Building tightly and ventilating the right way is highly recommended. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Is an Air Tightness Test Needed?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The results of the test can affect a building’s energy ratings because they play a part in SBEM and SAP calculations. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. Once every building in the residential development is not tested, the expected test result would have to be lowered by 2m3/h/m2. If 5m3/h/m2 was your target score, you must achieve 3m3/h/m2.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

AF Acoustics air tightness testing professionalism has helped many homes and business owners in East Sussex. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Service and knowledge

Having served many clients in East Sussex, we have the expertise to work on any type or size of building. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. Do you need trustworthy professionals who will provide great results in East Sussex? Contact AF Acoustics today.

Registered member of the Air Tightness Testing & Measurement Association (ATTMA)

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

Responsive scheduling

You can access our complete air tightness test in East Sussex at anytime. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. We guarantee that there will be no delays or difficulties.

You Could Get Your Certificates on the Next Day

In order to satisfy our clients, AF Acoustics strives to provide test results and certificates on the next day.

Fair Pricing

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in East Sussex.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in East Sussex

All domestic and commercial buildings in East Sussex can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Approved Document L1A and L2A demands that buildings take tests for air leaks. Although your building is required to have a rating result of 10m3/h/m2, the actual result might have to be lower than that due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment or SBEM. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. To get signed off by building control in East Sussex, all buildings are to undergo air tightness testing and measure up to the required energy efficiency standards. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

A Description of Part L Test

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. Part L of the Building Regulations requires that all non-domestic buildings which have a gross floor area greater than 500m2, be subject to mandatory air permeability tests. For domestic dwellings, a sample of houses (in a development) must be tested. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

Part F Test Explained

We will help you with all your Parts L and F requirements. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
Get the mechanical extract fans tested for flow rate. This is what Building Regulations Approved Document F requires. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. You can test, document and report the test of your building’s extractor fans in three ways. Using a vane anemometer, our testing procedure follows Method 3 – The minimum benchmark method.


What Kinds of Air Tightness Testing Services Do We Offer?

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. Air tightness testing for phased, zonal handover and LCHR constructions is done.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The test results are inscribed as m3/h/m2 – (m3 per hour) per square metre. Document L1A of Building Regulations declares air leakage testing to be mandatory. Your building may need a lower rate to meet the CO2 discharge target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. Uncontrolled ventilation can cause several problems. They are: infiltration of cold air, reduction in heat, more CO2 emission and higher energy costs.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

The measurement of air emitted by a building is tested to ascertain air permeability rating. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L2A. The highest air permeability rate for your dwelling when tested should be 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

We undertake smoke shaft integrity testing to confirm that the shaft is sufficiently air tight in order to allow the automatic opening ventilation to perform as required when it is fitted and commissioned. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. For the vents and fans to operate at the expected level, the smoke shaft must be air tight to create a difference in air pressure and give emergency services when needed. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. The shaft is tested for air permeability by using a fan that is fixed inside it. Then the openings are sealed off in all its parts so that the shaft can be thoroughly examined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Testing Extraction Fans for Air Flow

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. Extract fans are tested by us. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Particular Test and Building Readiness Operation

Air tightness test determines the level of air permeability in a building. The air tightness of a building improves its energy efficiency and internal environment.

Causes of excess air leakage are often hard to detect. These openings might not be seen because of the internal finishes that have been fixed. If you know the leakage paths of a building, you will know if it is air tight.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. We recommend that all buildings be tested as those that aren’t are penalised.

What Should You Do Before Testing Your Building?

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To prepare the site for the test, do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

How We Measure the Building Envelope

We conduct building envelope calculations prior to the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Envelope Area Air Permeability

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Exchange Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. The number of inhabitants and area of residence are used in measuring residential ventilation rates.

Evaluating a Cold Roof Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof has the insulation running along the pitched roof rafters with an air barrier normally running parallel along the inside face of the insulation. In the warm part of the insulation, is the barrier between the conditioned and unconditioned space.

Building readiness

To get the building ready, close and secure all internal doors, windows, Temporarily seal vents and smoke vents. Also fill drainage traps.

How the Test Is Done

Evaluate the weather (barometric pressure, wind speed and temperature) Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Set up testing equipment. Using the fan, measure the air flow volume, from the building fabric. Increase the speed of the fan slowly till it gets to 55-60Pa. Record how the air pressure differs at each fan speed.

Calculating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Tightness Testing and Compliance

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Lower energy costs and need for heating appliances due to a higher level of heat retention. A functional ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped Thermal comfort is enhanced because air infiltration is lower. Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. We render cost-effective services that include air leakage tests, design reappraisal, consultancy and support services for dwellings and non-dwellings in East Sussex.


Good and Best Practice Styles

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. The dwelling should be tested for air permeability in line with existing building standards, as stipulated by Approved Document Part L1A.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

ATTMA has specified technical standards that must be adhered to while testing buildings in the UK, according to building regulations and other documents. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Requirements Part L 2010 (England and Wales)

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. An SAP assessor can decide which buildings can use the assumed value successfully. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Air leakage testing is compulsory for residential areas and certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Building Regulation Requirements Part L (England and Wales)

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air tightness testers can be divided into three categories

  • Level 1: Testers can test dwellings and non-dwellings up to 4000m3 gross envelope volume when tested as a single entity, with a single fan.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Report for Air Leaks Test

Air leakage test reports are given by authorised organisations that test different buildings. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The organisation makes sure the report meets the company and government’s requirements.

Air Tightness Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Dwelling

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.