Air Tightness Testing, Certified by AF-Acoustics, in Sawbridgeworth

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

Revisions were made to building regulations to address air leakages – a process where air escapes through any opening in the building, affecting its energy efficiency. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are dedicated and accredited air leakage testing service providers in Sawbridgeworth and we are available to provide you with testing services whenever required. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Our air leakage test certificate is approved by ATTMA and is an indication that a building has been signed off by building control. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

Air tightness testing involves calculating the quantity of air which escapes through holes in the building fabric. It can also be called air pressure testing or air leakage testing. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing is the recognised method used to measure total air lost through leaks in a building fabric. This is often referred to as uncontrolled ventilation (draughts). When too much air leaks through a building’s fabric, heat loss occurs, making the occupants uncomfortable. Because the government is striving to scale back carbon dioxide discharge from new buildings, building rules now focuses on reducing air loss from the building envelope. This helps reduce CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

What Is Air Leakage?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

Air Leakage’s Resulting Outcomes

Heat loss within a building can be caused by air leakage. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

Over the years, these problems can damage the building’s structure.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

These effects can be mitigated by controlling the circulation of air into and out of the building. Air leakage and vapour diffusion are minimised when barriers are installed. To get rid of pollutants, water vapour and moisture odour, the building must be well ventilated.


Why Should We Do an Air Tightness test?

Climate change caused by carbon dioxide emission is an environmental hazard that government is trying to curb. Energy performance and air tightness is a key part of this plan. Environmental change caused by carbon dioxide emissions and global warming is partly aided by the burning of fossil fuels to generate heat. A reduction in air leakage lessens the heat needed to keep a building warm. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. Building tightly and ventilating the right way is highly recommended. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Do I Need an Air Tightness Test?

It is best practice to complete an air tightness test early on and then again at the final stage. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. Selective testing has a penalty of +2m3/h/m2. If target score is 5m3/h/m2, air tightness test score will have to be 3m3/h/m2.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why Choose AF Acoustics for Your Air Tightness Testing?

AF Acoustics air tightness testing professionalism has helped many homes and business owners in Sawbridgeworth. Our clients highly recommend us for the following reasons.

Great service and expertise

Our experience in serving diverse customers in Sawbridgeworth is proof of our ability to satisfy your requirements no matter the size and type of building, or your circumstance. Our qualified air tightness testing professionals will work around your schedule, so they fit into your project seamlessly, providing a quality service as conveniently as possible. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Sawbridgeworth –the right team for your building.

We Are Registered Members of the Air Tightness Testing and Measurement Association (ATTMA)

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

When to Call Us to Test Your Building

We want to provide detailed air permeability testing in Sawbridgeworth for you whenever you need it. We offer responsive scheduling. Schedule for your building to be tested at your convenience. We won’t make you wait or make the process complicated.

You Could Get Your Certificates on the Next Day

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Fair Pricing

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Sawbridgeworth.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Sawbridgeworth

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The result is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of building fabric.

Air leakage testing is required by Approved Document L1A and L2A. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. In Sawbridgeworth, the law demands that all new buildings be tested for air pressure before they can be approved and signed off by building control. This enables dwellings achieve energy efficiency standards. With air leakage tests, business areas are more comfortable for employees and customers. It will also help you reduce the cost of maintaining heating or cooling in your commercial building, making it more productive.

What Is Part L Test?

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness is referred to as air permeability or leakage rate. Air leaks through gaps and spaces in the building fabric such as service penetrations, walls and roof junctions. Sometimes, this is not obvious to occupants. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air leakage is vital to a building’s energy efficiency and is needed to meet Building Regulations Part L and carbon emission standards.

A Description of Part F Test

All your Part L and Part F testing requirements can be met by us. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Types of Air Leakage Testing Services We Offer

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: First Level – For building 1m3-4000m3, single and smaller non-dwellings, a single blower door fan is used to carry out the test. Level Two: Single and multifaceted buildings 4000m3 gross envelope volume and above are tested for air pressure. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level. Third Level – Testing is done for large high rise and phased handover buildings.

Approved Document L1 Air Pressure Testing of Houses

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The test results are inscribed as m3/h/m2 – (m3 per hour) per square metre. Air tightness testing is required for new builds. A lower air permeability rate might be needed due to carbon emission requirements. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

Air tightness testing determines the extent of air leaking from a building’s envelope. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air leakage testing is a requirement of Approved Document L2A. The highest air permeability rate for your dwelling when tested should be 10m3/h/m2. In order to comply with the SAP assessment, it may be necessary to achieve a lower air permeability rate. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Uncontrolled air leakage can cause several problems. They are: infiltration of cold air, discomfort, reduction in heat, and higher CO2 emission rate.

Testing the Smoke Shaft of Automatic Opening Vents

Smoke shaft needs to be tested because its air tightness determines the performance of the automatic opening vent fitted on it. Our professionals perform the test. When there is a fire, the auto opening vents play an important part in expelling smoke in multi-storey buildings. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. The shaft is tested for air permeability by using a fan that is fixed inside it. The openings for ventilation grilles and extract points on each floor are closed so that the state of the shaft itself is known. This test is conducted before the automatic opening ventilation is fixed and commissioned.

Domestic Ventilation Air Flow Testing (Extract Fans)

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We evaluate extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Air Tightness Test and Building Preparation Method

Air tightness tests calculate the level of air leakage a building has and if it is excessive. If the rate of air pressure is good, the energy performance of a building will be high and the inhabitants will be comfortable.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

Requirements before the Test

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. Making your building ready by ensuring it has an air tight environment will involve:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Calculating the Building Envelope

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The building envelope calculations are taken from the drawings and used for our air tightness testing.

Envelope Area Air Permeability

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. To calculate ventilation rates for domestic buildings, the area and number of people living in the building are considered.

Cold Roof Construction Envelope Area Calculation

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Site Test Process

Check weather conditions (wind speed, temperature, barometric pressure); Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Set up testing equipment. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Gradually increase the speed of the fan to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Air Leakage Calculation

We analyse the recorded air tightness test data and present the results to the client in a technical report. In the event of test failure, we advise the client on appropriate mitigation measures. Our expert knowledge will help in highlighting the areas of air leakage. Testing for Air Tightness & Meeting Part L Standards

Making sure your building is air tight and has adequate ventilation, be it natural, mechanical, or a combination of the two, will aid your comfort. Find below the benefits: Your heating expenses are less because heat doesn’t escape through a permeable building, and you won’t require appliances with more heating capability. Better ventilation system Lower probability of mould because moist air won’t condense in the openings in the building envelope. You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Good and Best Practice Standards

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. The regulation is focused on the conservation of fuel and power usage. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Testing for Air Permeability on Building Fabrics, According to L1 Technical Standard.

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation for England and Wales, Part L 2010

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. For developments of two or more dwellings, an air leakage test should be carried out on the three units of each dwelling type; or 50% of all instances of that dwelling type. A development with only two dwellings may not undergo a test if a suggested value of 15m3/h/m2 is stipulated in the DER/TER measurements. Find out from your SAP assessor if this is applicable to you. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Both residential areas and many non-Dwellings are to take the air leakage test. Buildings with a floor area of less than 500 m2 might not have to take the test. Where air tightness testing is not done, an assumed air permeability rate of 15 m3/h/m2 is used.

Part L Building Regulations Standards for England and Wales

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. The scheme echoes the conditions of the Minimum Technical Competence (MTC) and the National Occupation Standard (NOS) documents.

Air pressure testers have three levels

  • Air tightness testing for single buildings and smaller non-dwellings not more than 4000m3 is done with a fan.
  • Air tightness testing is done in all dwellings but big phased handover/zonal and high rise (LCHR) constructions are not included except a level three tester is the head of the team.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Report for Air Leaks Test

Accredited testing companies issue air pressure reports. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The report adheres to the company’s methods and all standards and requirements of Building Regulations.

Outcome of Air Leak Test

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. The identity of the customer, tester, building and address are correctly written in our report. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Dwelling

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.