ATTMA Licensed Air Tightness Testing in Bushey-Mead

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our Air Tightness Testing certificates are registered with Air Tightness Testing and Measurement Association (ATTMA), a professional association dedicated to promoting technical excellence in all air tightness testing and air leakage measurement applications. We are a dedicated and approved air leakage testing service in Bushey-Mead and we can provide air permeability measurement whenever you require. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

Our air leakage test certificate is approved by ATTMA and is an indication that a building has been signed off by building control. We don’t just provide air tightness testing. We describe the process thoroughly, give expert advice on areas that could be problematic during testing, and suggest improvements based on the air permeability rating of the building. AF Acoustics provides services that are cost effective and of high standard.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage, what Is It?

This occurs when openings in a building lead to excess air flow into and out of the building. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Air leakage plays a major part in the energy efficiency of buildings, and testing is necessary as a means of demonstrating that the air tightness targets used in building energy calculations have been achieved. In England and Wales, air tightness testing has been obligatory since 2006. All new dwellings and non-dwellings over 500m² are to be tested for air permeability.

The Impact of Air Leakage

Air leakage leads to heat reduction. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. There could be a decrease in the toughness and solidity of wet wooden covering due to rot.

These problems will eventually cause structural harm to the building.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

Successfully managing the movement of air into and outside the building will limit the damaging effects of moisture. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why Should We Do an Air Tightness test?

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. The best advice is to “Construct tightly, ventilate properly”. Air leakage causes infiltration of moisture into the building envelope, leading to health issues and high repair costs.

When Do I Need an Air Tightness Test?

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. Newly completed constructions’ energy ratings can be influenced by the test results, as they are used in SAP and SBEM calculations. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. With selective testing there is a penalty of +2m3/h/m2; if the target score is 5 m3/h/m2 and selective testing was applied, the air tightness test would have to achieve a lower score of 3.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. This type of testing does not reveal the exact air tightness of each residence and is therefore not advisable. Moreover, the penalty implemented on untested buildings makes the required air permeability rate difficult to attain.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

At AF Acoustics, our air tightness testing expertise has helped many home and business owners in Bushey-Mead. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Helpful service and information

Our experience in serving diverse customers in Bushey-Mead is proof of our ability to satisfy your requirements no matter the size and type of building, or your circumstance. Our qualified air tightness testing professionals will work around your schedule, so they fit into your project seamlessly, providing a quality service as conveniently as possible. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Bushey-Mead –the right team for your building.

We Are Registered Members of the Air Tightness Testing and Measurement Association (ATTMA)

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

Picking a Time for Your Air Permeability Test

We want to provide detailed air permeability testing in Bushey-Mead for you whenever you need it. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. We guarantee that there will be no delays or difficulties.

Quick Turnaround on Test Certificates Where Possible

In order to satisfy our clients, AF Acoustics strives to provide test results and certificates on the next day.

Affordable Fees

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Bushey-Mead at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Tests for Any Kind of building in Bushey-Mead

All domestic and commercial buildings in Bushey-Mead can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Air leakage testing is required by Approved Document L1A and L2A. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. With air leakage comes heat loss, greater CO2 discharge, draughts, thermal bypassing and wind washing and poor energy performance. Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. In Bushey-Mead, the law demands that all new buildings be tested for air pressure before they can be approved and signed off by building control. This enables dwellings achieve energy efficiency standards. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. The company also gets reduced heating and cooling costs and higher productivity rates.

The Part L Test

Air tightness testing is a Building Regulations obligation for new buildings, commercial developments and revamped buildings. This was put into effect in 2006 after Document L was reappraised. Other names for air tightness are air permeability rate or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Part L of the Building Regulations requires that all non-domestic buildings which have a gross floor area greater than 500m2, be subject to mandatory air permeability tests. For domestic dwellings, a sample of houses (in a development) must be tested. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

A Description of Part F Test

We can complete all your Part F and Part L testing requirements. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. Evidence of this test must be passed to the Building Control Body (BCB) as part of their sign-off procedure. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


What Kinds of Air Tightness Testing Services Do We Offer?

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Air Tightness Testing of Houses and Flats to Meet Approved Document L1

Air pressure testing, involves the calculation of air escaping through openings in a building. The test results are inscribed as m3/h/m2 – (m3 per hour) per square metre. Document L1A of Building Regulations declares air leakage testing to be mandatory. The carbon discharge requirement for all buildings reduces the air permeability rate target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

Approved Document L2A Air Pressure Testing of Commercial Constructions

The measurement of air emitted by a building is tested to ascertain air permeability rating. The test results are inscribed using m3 per hour per square metre. Air pressure testing is compulsory, according to Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Automatic opening vents help storey buildings dispel smoke when there is a fire. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. We’re committed to automatic opening vents builders’ target for air permeability. This enables the vents to work efficiently. An air pressure test is taken for the smoke shaft by installing a fan inside. Once the fan is fixed, the extract points and ventilation grilles on each storey are sealed to ensure that the shaft is in proper condition. Once the test is completed and successful, the automatic opening vents are installed.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We test fan extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Precise Air Pressure Test and Building Procedure

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. When air leakage is reduced in a building, the occupants will not experience discomfort and the energy performance will increase.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. We recommend that all dwellings be tested, as there is a penalty for developments that are not tested.

Requirements before the Test

Send the drawings of your dwelling (plans and elevations) and its target air permeability requirements to our test engineers. The duration of air pressure testing is 30 to 60 minutes in most cases and the wind speed should not be more than 6m/s. Test engineers need the drawings and air permeability details from clients so that they can know the size of the building envelope and other information before arriving at the building. To prepare the site for the test, do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Measurement

We conduct building envelope calculations prior to the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Permeability & The Envelope Area

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Evaluating a Cold Roof Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

Site Test Procedure

Evaluate the weather (barometric pressure, wind speed and temperature) Place the fan on an aperture within the building envelope. Ensure all the testing equipment is ready. Using the fan, measure the air flow volume, from the building fabric. Slowly raise the fan speed from 20-25Pa to 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Measuring air leakage

Our air leakage measurement involves picking out the gaps where air leakage takes place, recording the test information, sending results to customers in a technical report and advise clients on repair methods in the case of a test failure. Air Leakage Testing and Compliance

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Lower heating bills due to less heat loss, with potentially smaller requirements for heating and cooling equipment capacities Your ventilation system will operate in a better way Lower probability of mould because moist air won’t condense in the openings in the building envelope. Fewer draughts, causing more comfort From a single dwelling to the largest commercial development, we offer stress-free compliance measurements to Part L Building Regulations and Building Standards. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in Bushey-Mead. We also provide cost-effective, local service that complies with all relevant Building Standards.


Best Practice Procedures

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. Less fuel and power are consumed by buildings. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

There are technical standards for air tightness test of buildings in the UK detailed by Air Tightness Test and Measurement Association (ATTMA). BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. Your SAP assessor will let you know if you can do this for your building. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. Buildings with a floor area of less than 500 m2 might not have to take the test. Where air tightness testing is not done, an assumed air permeability rate of 15 m3/h/m2 is used.

Building Regulation Requirements Part L (England and Wales)

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

Air pressure testers have three levels

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Air tightness testing for phased, zonal handover, LCHR and multifaceted constructions is carried out by level three experts.

Report on Test for Air Permeability

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Outcome of Air Leak Test

Our test and subsequent results are conducted and written to meet standard requirements, highlight any deviation from the standards and crosscheck air pressure values against target values. We make sure our report has the name of the building, customer, address and tester. We will state if your building has passed or failed the test and give advice on the actions you need to take if another test is needed.

Resources Air Tightness Checklist – Dwelling

Go through the list below and send the design air testing permeability value to us before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.