ATTMA Licensed Air Tightness Testing in Carshalton-Beeches

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. Air tightness testing has been a compulsory part of the building regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are dedicated and accredited air leakage testing service providers in Carshalton-Beeches and we are available to provide you with testing services whenever required. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. Our services provide great value for money at high standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing involves calculating the quantity of air which escapes through holes in the building fabric. It is sometimes referred to as air leakage testing or air pressure testing. Air leakage, also known as infiltration or draught, allows air to pass through unwanted leaks in a building; unlike ventilation where the air inside and outside of a building and its flow from one end to the other is controlled. Air tightness testing is the recognised method used to measure total air lost through leaks in a building fabric. This is often referred to as uncontrolled ventilation (draughts). When too much air leaks through a building’s fabric, heat loss occurs, making the occupants uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. Incorporating this at the beginning of the construction process makes the development more cost effective and energy efficient.

What Is Air Leakage?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. When the circulation of air is properly monitored and bridled, ventilation has occurred. Another name for air leakage is infiltration. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. Air leakage testing plays a significant role in the energy-saving efficacy of properties. With air tightness testing, you can be sure that the building has met the stipulated targets used for energy calculation and air tightness. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. Movement of moist air into cavities in other parts of the building also occur. This process is called exfiltration. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. The strength of the outer wooden covering is drastically reduced because it is wet.

The building becomes structurally damaged as time goes on.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

These effects can be mitigated by controlling the circulation of air into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why Must We Do an Air Tightness Test?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Uncontrolled air leakage also results in health problems. Coupled with poor air circulation, it leads to the growth of mould and mildew. To “Construct tight, ventilate right” is the best practice. The result of uncontrollable air moving into the building fabric could be health problems and costly repairs.

When Do I Need an Air Tightness Test?

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The results of the test are used in SAP and SBEM calculations, and can influence a building’s overall energy rating. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. With selective testing there is a penalty of +2m3/h/m2; if the target score is 5 m3/h/m2 and selective testing was applied, the air tightness test would have to achieve a lower score of 3.

If the building has not been tested for air tightness, assessed air permeability rate is the average result of similar buildings in the area +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Business owners and home owners in Carshalton-Beeches have been helped by AF Acoustics air tightness testing. Our clients highly recommend us for the following reasons.

Expert information and service

Our experience in serving diverse customers in Carshalton-Beeches is proof of our ability to satisfy your requirements no matter the size and type of building, or your circumstance. We have competent and accredited air testing professionals who provide a quality, convenient service. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Registered by the Leading Air Tightness Body in UK

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

When to Call Us to Test Your Building

We want you to be able to access comprehensive air tightness testing in Carshalton-Beeches whenever you need it. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. We won’t make you wait or make the process complicated.

Next-day Turnaround for Certificates

AF Acoustics has professional speedy services to satisfy clients who want their test results immediately. We have a next day turnaround policy for our test certificates and endeavour to deliver in all situations.

Affordable Prices

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Carshalton-Beeches at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in Carshalton-Beeches

We can test any building in Carshalton-Beeches for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. Air permeability testing calculates how much air moves through spaces in your building’s fabric. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air tightness testing is recommended by Approved Document L1A and L2A. The maximum air permeability rate is 10m3/h/m2. The carbon discharge requirement for all buildings reduces the air permeability rate target. This target can be found in a building’s design-stage SAP assessment or SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Carshalton-Beeches. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. Heating and cooling expenses are also reduced and the environment is more productive.

The Part L Test

Air tightness testing has been a mandatory part of the Building Regulations for new build and refurbishment projects since Approved Document L was revised in 2006. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test

We will ensure that you exceed all the Parts L and F standards. We deliver quality air permeability and extract fan flow rate testing, and also recommend skilled experts who will handle your water calculations, SAP calculations and Energy Performance Certificates.
Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. The Building Control Body (BCB) has to see the results of the test as part of its sign-off procedure. You can test, document and report the test of your building’s extractor fans in three ways. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Types of Air Leakage Testing Services We Offer

There are several levels of air leakage testing based on the kind, size and multifaceted aspects of a dwelling. Here they are: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are inscribed as m3/h/m2 – (m3 per hour) per square metre. Part L1A of Building Regulations stipulates that such tests be conducted. A building has to achieve a lower rate to meet the carbon dioxide emission target. You can find the required air permeability rate of your building in its design-stage SAP assessment SBEM. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

Commercial Building Testing as Required by Approved Document L2A

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result of the air leakage test is expressed as a quantity of air leakage (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. To get your building’s required air permeability rate, check its design-stage SAP or SBEM assessment. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

We Test Your Automatic Opening Vent’s Smoke Shaft

Smoke shaft needs to be tested because its air tightness determines the performance of the automatic opening vent fitted on it. Our professionals perform the test. Automatic opening vents help storey buildings dispel smoke when there is a fire. The performance of the fans and vents depends on the air tightness of the shaft. Air tight shafts have enough pressure difference to extract smoke and save people inside a building during fire emergencies. To ensure that automatic opening ventilations work properly, their manufacturers have placed an air permeability target for them which we work towards. The shaft is tested for air permeability by using a fan that is fixed inside it. The intended openings of the shaft (i.e. extract point and openings for ventilation grilles on each floor) are sealed off for the test so that the integrity of the shaft itself can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We are able to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Explicit Test and Building Preparation Process

The measurement of air pressure in a building is known as an air tightness test. The greater the air tightness of a building, the more comfortable the occupants are and the higher its energy performance.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. The best solution to demonstrate a building’s air tightness level is to check for leakage paths in the building envelope.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We recommend that all buildings be tested as those that aren’t are penalised.

Pre-Test Requirements

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. The test engineers would like to have the information needed for the test before coming to your development. Our air leakage test is done between 30 and 60 minutes, and the wind speed is a maximum of 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Building Envelope Measurement

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the physical separator between the indoors and outdoors. We use the building envelope measurements to get the right results when testing for air tightness.

Air Permeability from the Envelope Area

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Changes Per Hour

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Calculating the Envelope Area of a Cold Roof

The area of the roof and ground floor should be the same. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Process for Testing the building

Evaluate the weather (barometric pressure, wind speed and temperature) Fix a fan to an aperture, usually the door, in the building. Fix the instrument for testing. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Increase the speed of the fan slowly till it gets to 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Calculating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Air Tightness Testing and Compliance

Making sure your building is air tight and has adequate ventilation, be it natural, mechanical, or a combination of the two, will aid your comfort. Find below the benefits: Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Better ventilation system Less mould will be trapped in the building fabric as a result of less moisture. Thermal comfort is enhanced because air infiltration is lower. Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Best Practice Procedures

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). Less fuel and power are consumed by buildings. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Testing for Air Permeability on Building Fabrics, According to L1 Technical Standard.

ATTMA has specified technical standards that must be adhered to while testing buildings in the UK, according to building regulations and other documents. BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. Those exceptions only occur when there are two or more dwellings in a development. Three units of a dwelling type or 50% of all examples of that dwelling type should be tested. For developments where no more than two dwellings are constructed, it may be possible to avoid the need for any pressure testing by using an assumed value of 15m3/h/m2 within the DER/TER calculations. Your SAP assessor will be able to confirm if this is the case for your dwelling. There are different ways that Dwellings and Non-Dwellings should be tested. ATTMA TSL1 and ATTMA TSL2 have clearly stated these. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

Building Regulation Requirements Part L (England and Wales)

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. Minimum Technical Competence (MTC) and National Occupation Standard (NOS) documents are the basis for the scheme.

Air pressure testers have three levels

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • Level 2: Testers can test all buildings except large, complex and or high-rise buildings and or phased handover or zonal buildings unless part of a team managed by a level 3 tester.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Air Tightness Test Report

Air leakage test reports are given by authorised organisations that test different buildings. Temporary sealing of extraction units will be done by the tester; all test results will be noted, and a shortened form report will be written which will include the findings of the test. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Air Tightness Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. Our reports correctly note the client, air tightness tester, building and address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Dwelling

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.