Hyde-Park-Corner Air Tightness Testing Certified by AF-Acoustics

Air tightness testing, also called air leakage testing or air pressure testing, calculates the quantity of air escaping through openings in a building. It has been a mandatory part of the building regulations for new build and refurbishment projects since Approved Document L was revised in 2006.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. Located in Hyde-Park-Corner, our company is a committed and accredited air permeability testing service provider; we provide air testing services. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

We are registered members of the ATTMA. As a result, our air tightness certificates prove that the building requirements for your building have been met. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. Air leakage and air pressure are also used in place of air tightness. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing is done to calculate the total quantity of air that escapes through cracks in the building. Such air leakage is called uncontrolled ventilation (draughts). An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. Building plans will often consider air tightness at the beginning stages of development so as to measure up to stricter building standards. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

What Is Air Leakage?

This occurs when openings in a building lead to excess air flow into and out of the building. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

What Are the Problems Air Leakage Can Cause?

Air leakage leads to heat reduction. During windy or cold weather, the infiltration of uncontrolled air through cracks in a building envelope occurs, leading to heat reduction. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

These problems will eventually cause structural harm to the building.
Other impacts include:

  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO2 emissions (as result of additional heating required)

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why is an Air Tightness Test Important?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. The reduction of air leakage leads to lower heat loss and quantity of heat generated in a building. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. The best advice is to “Construct tightly, ventilate properly”. The result of uncontrollable air moving into the building fabric could be health problems and costly repairs.

When Should an Air Tightness Test Be Done?

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. The results of the test can affect a building’s energy ratings because they play a part in SBEM and SAP calculations. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why AF Acoustics Is the Right Choice for Your Air Tightness Testing

At AF Acoustics, our air tightness testing expertise has helped many home and business owners in Hyde-Park-Corner. Because of the following guarantees of working with us, we are highly endorsed by our clients.

Service and knowledge

Having served many clients in Hyde-Park-Corner, we have the expertise to work on any type or size of building. We have competent and accredited air testing professionals who provide a quality, convenient service. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Hyde-Park-Corner –the right team for your building.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

When Can You Call Us to Test Your Building?

Our comprehensive air permeability testing in Hyde-Park-Corner is available. We offer responsive scheduling. Schedule for your building to be tested at your convenience. We guarantee no delays or complications regarding scheduling.

You Could Get Your Certificates on the Next Day

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Affordable Prices

AF Acoustics offers competitive fees in Hyde-Park-Corner. Since we’re a small business, we offer less expensive air permeability testing and render high quality services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Permeability Testing for Different Kinds of Commercial and Domestic Dwellings in Hyde-Park-Corner

Whatever the type and size of a domestic or commercial building in Hyde-Park-Corner, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The result is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of building fabric.

Approved Document L1A and L2A demands that buildings take tests for air leaks. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. In Hyde-Park-Corner, the law demands that all new buildings be tested for air pressure before they can be approved and signed off by building control. This enables dwellings achieve energy efficiency standards. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. The company also gets reduced heating and cooling costs and higher productivity rates.

Part L Test Explained

Since Approved Document L was reviewed in 2006, building regulations have demanded that new and rehabilitated constructions conduct air tightness test. Air tightness is referred to as air permeability or leakage rate. Air leaks through gaps and spaces in the building fabric such as service penetrations, walls and roof junctions. Sometimes, this is not obvious to occupants. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

A Description of Part F Test

We can complete all your Part F and Part L testing requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
New buildings should ensure that all mechanical extract fans are tested for flow rate, as stipulated by Part F of the Building Regulations. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. AF Acoustics employs the minimum benchmark procedure (method 3), which involves using a vane anemometer.


Different Ways We Test for Air Permeability

There are several levels of air leakage testing based on the kind, size and multifaceted aspects of a dwelling. Here they are: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Level 2: Air pressure testing for simple and complex buildings larger than 4000 m³ gross envelope volume which does not include large and complex, high rise (LCHR) buildings, and phased handover/zonal buildings. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

We Offer Air Leakage Testing of Apartments and Houses to Meet Approved Document L1 Standard

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Air leakage testing is a requirement of Approved Document L1A. A building has to achieve a lower rate to meet the carbon dioxide emission target. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The test results are inscribed using m3 per hour per square metre. Air leakage testing is a requirement of Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. To get your building’s required air permeability rate, check its design-stage SAP or SBEM assessment. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

We Offer Smoke Shaft Air Pressure Testing

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. An air pressure test is conducted using a fan installed in the shaft. The usual openings are closed off too so that the shaft’s integrity can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

Domestic Ventilation Air Flow Testing (Extract Fans)

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We evaluate extraction rates. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Another of such targets, as stated by Part F, is to have the standard intermittent extractor fans, like kitchen and bathroom extractors, in new constructions measured for air flow and results given to Building Control before the construction work is completed.

Precise Air Pressure Test and Building Procedure

When a building is checked for the quantity of air flowing through the gaps in the fabric, it has undergone an air tightness test. If the rate of air pressure is good, the energy performance of a building will be high and the inhabitants will be comfortable.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The best solution to demonstrate a building’s air tightness level is to check for leakage paths in the building envelope.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

Pre-Test

Send the drawings of your dwelling (plans and elevations) and its target air permeability requirements to our test engineers. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. In preparing the site to create an air-tight environment:

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

Building Envelope Calculations

We conduct building envelope calculations prior to the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Permeability from the Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Change Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Cold Roof Construction Envelope Area Calculation

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Building Preparation

  • Turning off mechanical vents
  • Shutting all windows and internal doors
  • Temporarily seal vents and smoke vents
  • Filling the drainage stops

Site Test Procedure

Check all weather conditions such as temperature, wind speed and barometric pressure. Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Ensure all the testing equipment is ready. Calculate the air flow volume through the fan which equates to the air leakage. Raise the fan speed from 20-25Pa to the highest speed of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Air Leakage Calculation

We analyse the recorded air tightness test data and present the results to the client in a technical report. In the event of test failure, we advise the client on appropriate mitigation measures. Our expert knowledge will help in highlighting the areas of air leakage. Testing for Air Tightness & Meeting Part L Standards

Making sure your building is air tight and has adequate ventilation, be it natural, mechanical, or a combination of the two, will aid your comfort. Find below the benefits: The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. The ventilation system will operate optimally Reduced chance of mould and rot, as moisture is less likely to become trapped You won’t experience much discomfort because there will be fewer draughts. Our clients can expect a stress-free conformity to Part L Building Regulations standards, whether they have a single building or a large commercial building. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Good and Best Practice Styles

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. This regulation was put in place to conserve fuel and power. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

There are technical standards for air tightness test of buildings in the UK detailed by Air Tightness Test and Measurement Association (ATTMA). This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation for England and Wales, Part L 2010

Approved document L1A has made it compulsory for all new buildings to be tested for air leaks. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. An SAP assessor can decide which buildings can use the assumed value successfully. The required process for testing buildings for air tightness has been declared in ATTMA TSL1 for occupied buildings and ATTMA TSL2 for unoccupied ones. Non-Dwellings and residential buildings are required to test for air leakage. Non-dwellings where floor area is less than 500 m2 or has an assumed assessed air permeability rate of 15 m3/h/m2 in their calculations, may not have to undergo the air leakage test.

Building Regulations Part L (England And Wales)

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air pressure testers have three levels

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Report on Test for Air Permeability

Air leakage test reports are given by authorised organisations that test different buildings. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Results

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. The identity of the customer, tester, building and address are correctly written in our report. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.