North-Feltham Air Tightness Testing, Licensed by AF-Acoustics

The measurement of air escaping from a building is called air tightness testing. It is also referred to as air permeability testing or air pressure testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. We are a dedicated and approved air leakage testing service in North-Feltham and we can provide air permeability measurement whenever you require. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. If you want specialist air pressure testing services in North-Feltham, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

AF Acoustics provides services that are cost effective and of high standard.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is Air Tightness Testing?

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. Other names for air tightness testing are air leakage testing and air pressure testing. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. When the building fabric is properly constructed to reduce air loss, the building is economical, and energy efficient.

Air Leakage Explained

Air leakage occurs when air escapes through holes and gaps in a building. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. The strength of the outer wooden covering is drastically reduced because it is wet.

Over time, any of these conditions can cause structural damage.
Other impacts include:

  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO2 emissions (as result of additional heating required)

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


The Importance of Air Tightness Test

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Heating buildings involves burning fossil fuel which increases CO2 emissions and causes global warming. When air leakage is controlled, heat loss and energy used by the heating system are reduced. There are also health issues associated with uncontrolled air leakage. When a building has poor levels of controlled ventilation and high levels of uncontrolled air leakage, this can cause excessive moisture and mould growth, leading to poor health. A great option would be to build tight and ventilate right. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

Recommended Period for Air Tightness Test

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. Newly completed constructions’ energy ratings can be influenced by the test results, as they are used in SAP and SBEM calculations. Individual property is not tested in a large residential development. The test is done on different types of houses within the area. Once every building in the residential development is not tested, the expected test result would have to be lowered by 2m3/h/m2. If 5m3/h/m2 was your target score, you must achieve 3m3/h/m2.

buildings that have not been tested are assessed for air permeability based on similar dwellings’ test scores +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

AF Acoustics air tightness testing professionalism has helped many homes and business owners in North-Feltham. We come highly recommended by our clients because of the following guarantees.

Service and knowledge

Our experience in serving diverse customers in North-Feltham is proof of our ability to satisfy your requirements no matter the size and type of building, or your circumstance. We have competent and accredited air testing professionals who provide a quality, convenient service. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in North-Feltham –the right team for your building.

Registered member of the Air Tightness Testing & Measurement Association (ATTMA)

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

When Can You Call Us to Test Your Building?

We want you to be able to access comprehensive air tightness testing in North-Feltham whenever you need it. We offer responsive scheduling options. You can schedule for air tightness testing at your convenience. There won’t be delays or complications once you’ve fixed a time.

Quick Turnaround on Test Certificates Where Possible

In order to satisfy our clients, AF Acoustics strives to provide test results and certificates on the next day.

Affordable Fees

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in North-Feltham.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Tests for Any Kind of building in North-Feltham

We can test any building in North-Feltham for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. Air permeability testing calculates how much air moves through spaces in your building’s fabric. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Air tightness testing is recommended by Approved Document L1A and L2A. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. In order to comply with the carbon emission target, it may be necessary to achieve a lower air permeability rate. The required air permeability rate for each building can be found on the design-stage SAP assessment or SBEM for that building. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and discomfort. It can also create convective loops within a building; this is often referred to as thermal bypassing and wind washing. Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in North-Feltham. With air leakage tests, business areas are more comfortable for employees and customers. The company also gets reduced heating and cooling costs and higher productivity rates.

A Description of Part L Test

Since Approved Document L was reviewed in 2006, building regulations have demanded that new and rehabilitated constructions conduct air tightness test. The air-tightness of a building is known as its ‘air permeability’ or leakage rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. The maximum air permeability rating allowed is 10m3/h/m2, but your building might need a lower rating ts. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

The Part F Test

We can provide you all that you need to serve all your Part L and Part F requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
Approved Document F of the Building Regulations requires that all mechanical extract fans in new dwellings be subjected to a flow rate test. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. There are 3 available methods for examining, recording and reporting the testing of extract fans. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


What Kinds of Air Tightness Testing Services Do We Offer?

Here are the descriptions of the ways air permeability can be tested: A single blower door fan is used for air tightness testing for single buildings and smaller non-dwellings not more than 4000m3. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air tightness testing determines the extent of air leaking out a building’s envelope. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Air leakage testing is a requirement of Approved Document L1A. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result of the air leakage test is expressed as a quantity of air leakage (m3 per hour) per square metre of building envelope. Document L2A of Building Regulations declares air leakage testing to be mandatory. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. Your building may need a lower air permeability rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Air leakage causes heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

We test the integrity of the smoke shaft to ensure the automatic opening ventilation is placed in the best condition. Automatic opening vents help storey buildings dispel smoke when there is a fire. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft is tested for air permeability by using a fan that is fixed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. This test is conducted before the automatic opening ventilation is fixed and commissioned.

Testing Extraction Fans for Air Flow

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We evaluate extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Another of such targets, as stated by Part F, is to have the standard intermittent extractor fans, like kitchen and bathroom extractors, in new constructions measured for air flow and results given to Building Control before the construction work is completed.

Specific Test and Building Preparation Procedure

Air tightness tests calculate the level of air leakage a building has and if it is excessive. If the rate of air pressure is good, the energy performance of a building will be high and the inhabitants will be comfortable.

Holes and spaces in a building’s fabric might be hidden by the internal building finishes, making them hard to find. If you know the leakage paths of a building, you will know if it is air tight.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. Buildings that don’t undergo the test are penalised. All dwellings in a development should be tested to ensure optimum air tightness.

What You Need to Do Before Undertaking the Test

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. Making your building ready by ensuring it has an air tight environment will involve:

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

Measuring the Building’s Envelope

We undertake the building envelope calculations before we arrive on the site. The building envelope is the physical separator between the indoors and outdoors. The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Permeability & The Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Change Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. Residential ventilation rates are measured based on the number of inhabitants and area of residence.

Measuring a Cold Roof Construction’s Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has its insulation at the ceiling level, with space between the insulation and rafters.

Measuring a Warm Roof Construction’s Envelope Area

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

Site Test Procedure

Check all weather conditions such as temperature, wind speed and barometric pressure. Place the fan on an aperture within the building envelope. Fix the instrument for testing. Record the air volume flow passing through the fan. Slowly raise the fan speed from 20-25Pa to 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Measuring air leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Testing for Air Permeability and Following Part L Building Regulations

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. The ventilation system will operate optimally Lower probability of mould because moist air won’t condense in the openings in the building envelope. Infiltration of air is reduced and the inhabitants are more comfortable. Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. Our services include: air pressure testing, support services, re-examining designs and consultancy for all buildings in North-Feltham. We are cost effective and adhere to all building regulations.


Good & Best Practice Methods

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). The regulation helps to reduce the use of fuel and power. Part L1A states that any new building must undergo an air pressure test, according to present regulations.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. This Technical Standard provides detailed guidance and clarification of BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”, in order to ensure consistency by testing companies.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. To find if your building falls into this category, contact your SAP assessor. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Air leakage testing is compulsory for residential areas and certain Non-Dwellings. Non-dwellings with a typical floor area less than 500m2 may be exempt. Where testing is not carried out, an assessed air permeability of 15 m3/h/m2 must be used in calculations.

England and Wales: Building Regulations Part L

ATTMA has a scheme for air leakage test organisations, which commenced in January 2015. The scheme was approved by the government and is stated in Technical Standard L1 and L2. The scheme echoes the conditions of the Minimum Technical Competence (MTC) and the National Occupation Standard (NOS) documents.

There are three levels of testers:

  • A single fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Third Level – These experts carry out air tightness testing in large and complex high rise and phased handover buildings.

Report on Test for Air Permeability

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. The organisation makes sure the report meets the company and government’s requirements.

Air Tightness Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. Our reports correctly note the client, air tightness tester, building and address. We will state if your building has passed or failed the test and give advice on the actions you need to take if another test is needed.

Resources Air Tightness Checklist – Dwelling

Send us your building design air permeability target and crosscheck the list below before we get to the site.

Air Permeability Pathway Checklist – Use this checklist to make sure you are ready for the test. Ask yourself, “Have I sealed any visible opening?” Check the following appliances.

  • Junction between floor and wall under kitchens and baths
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Windows
  • Metre boxes
  • Hot water tank
  • Chimney
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Drainage traps

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.