Oakwood Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. Located in Oakwood, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. We don’t just provide air tightness testing. We describe the process thoroughly, give expert advice on areas that could be problematic during testing, and suggest improvements based on the air permeability rating of the building. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

What is the Assessment of a Building’s Air Tightness?

Air tightness testing is carried out to determine the volume of air escaping from holes in a building fabric. Air tightness testing is also known as air pressure testing or air leakage testing. Air leakage is the draught or infiltration of unbridled air through the spaces and openings in a building. It is different from ventilation, which is the contained circulation of air within and outside the building. Air leakage is uncontrolled ventilation. Air tightness testing is the approved method for gauging the entire air that has leaked through a building fabric. When too much air leaks through a building’s fabric, heat loss occurs, making the occupants uncomfortable. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. With air tightness testing, you can determine whether or not air is leaking from a building’s envelope, the build quality and energy efficiency of new developments. The introduction of tougher regulations has led to the construction of high-quality buildings. Building designs employ air tightness procedures from the early part of construction, creating a building that has adequate air tightness built into its design. This can make a building more energy efficient since air leakage is under control. It will also be cost effective and of high quality.

Air Leakage Explained

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Air leakage plays a major part in the energy efficiency of buildings, and testing is necessary as a means of demonstrating that the air tightness targets used in building energy calculations have been achieved. In 2006, air tightness of newly constructed buildings and non-dwellings with a floor area over 500m² became compulsory in England and Wales.

Air Leakage’s Resulting Outcomes

Air leakage leads to a reduction in heat. Heat loss is caused by influx of frosty outside air into a building through the openings in its envelope during draughts and cold weather, leading to an uncomfortable drop in temperature. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. Wet wooden overlay or framing can decay, decreasing its durability.

Over the years, these problems can damage the building’s structure.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. Air leakage and vapour diffusion are minimised when barriers are installed. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


Why You Should Conduct an Air Tightness Test

Climate change caused by carbon dioxide emission is an environmental hazard that government is trying to curb. Energy performance and air tightness is a key part of this plan. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. To “Construct tight, ventilate right” is the best practice. High degrees of air leaks cause huge problems such as expensive remedial work on the building and medical problems.

When Your Building Needs an Air Tightness Test

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The results of the test can affect a building’s energy ratings because they play a part in SBEM and SAP calculations. Larger residential developments do not require testing to be completed on each individual property, instead, testing is undertaken on the different dwelling types within the development. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why Pick AF Acoustics for Your Air Tightness Testing?

With AF Acoustics, homes and businesses in Oakwood have been getting quality air tightness testing. We are recommended by our clients for the following reasons.

Service and knowledge

Having served many clients in Oakwood, we have the expertise to work on any type or size of building. We have competent and accredited air testing professionals who provide a quality, convenient service. Do you need trustworthy professionals who will provide great results in Oakwood? Contact AF Acoustics today.

Registered Members of the Leading Air Tightness Body in the UK

We are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that is centred on technical excellence in all air leakage measurement methods. ATTMA, the leading air leakage testing body in the UK, has recognised the quality of our services.

When to Call Us to Test Your Building

We would like to give your building in Oakwood a thorough air leakage test whenever it is needed. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. We guarantee no delays or complications regarding scheduling.

Test Certificates Get to You on the Next Day, Where Feasible

AF Acoustics offers a professional and reliable service; we understand that our clients are keen to get their test results as quickly as possible, to facilitate this process we strive to deliver next-day turnaround on test certificates.

Competitive Charges

AF Acoustics offers competitive fees in Oakwood. Since we’re a small business, we offer less expensive air permeability testing and render high quality services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Oakwood

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. Air tightness test checks the extent of uncontrolled air moving through openings in the building envelope. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Air leakage testing is a requirement of Approved Document L1A and L2A. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. Air permeability testing is a legal requirement for constructions in Oakwood. This way, they can have high energy performance, meet building regulations requirements and get signed off by building control. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. This increases the company’s productivity and lowers heating and cooling expenses.

The Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Other names for air tightness are air permeability rate or leakage rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Part L of the Building Regulations requires that all non-domestic buildings which have a gross floor area greater than 500m2, be subject to mandatory air permeability tests. For domestic dwellings, a sample of houses (in a development) must be tested. To adhere to Part L, make sure your building’s air permeability rate is not greater than 10m3/h/m2. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test Explained

We can provide you all that you need to serve all your Part L and Part F requirements. We deliver quality air permeability and extract fan flow rate testing, and also recommend skilled experts who will handle your water calculations, SAP calculations and Energy Performance Certificates.
New buildings should ensure that all mechanical extract fans are tested for flow rate, as stipulated by Part F of the Building Regulations. Evidence of this test must be passed to the Building Control Body (BCB) as part of their sign-off procedure. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. Using a vane anemometer, our testing procedure follows Method 3 – The minimum benchmark method.


Different Ways We Test for Air Permeability

Here are the descriptions of the ways air permeability can be tested: A single blower door fan is the instrument used for the first level to examine single buildings and smaller non-dwellings from 1m3 to 4000m3. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Third Level – Testing is done for large high rise and phased handover buildings.

Domestic Buildings Testing as Required by Approved Document L1

Air pressure testing, involves the calculation of air escaping through openings in a building. The result of the air leakage test is expressed as a quantity of air leakage (mm3 per hour) per square metre of building envelope. Air leakage testing is a requirement of Approved Document L1A. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The design-stage SAP assessment SBEM of a construction records its required air permeability rate. Too much air leakage leads to heat loss which can lead to draughts and higher energy bills.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

Air tightness testing determines the extent of air leaking from a building’s envelope. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Part L2A of Building Regulations has demanded that such tests be conducted. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The design-stage SAP or SBEM assessment of a construction records its required air permeability rate. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

We Offer Smoke Shaft Air Pressure Testing

Smoke shaft needs to be tested because its air tightness determines the performance of the automatic opening vent fitted on it. Our professionals perform the test. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. Fans are placed in the smoke shaft to conduct an air tightness test. Once the fan is fixed, the extract points and ventilation grilles on each storey are sealed to ensure that the shaft is in proper condition. Once the test is completed and successful, the automatic opening vents are installed.

Domestic Ventilation Air Flow Testing (Extract Fans)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. Extract fans are tested by us. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Another of such targets, as stated by Part F, is to have the standard intermittent extractor fans, like kitchen and bathroom extractors, in new constructions measured for air flow and results given to Building Control before the construction work is completed.

Particular Test and Building Readiness Operation

Air tightness test determines the level of air permeability in a building. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

External claddings and the internal building finishes might obscure a gap in the building fabric. This makes it hard to notice and can results to potential air leakage. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

Requirements before the Test

Our test engineers require the drawings (plans and elevations) and target air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. An air tight environment should be created in your building before the test to ensure optimal results. Do the following:

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Calculations

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the physical separator between the indoors and outdoors. We use the building envelope measurements to get the right results when testing for air tightness.

Envelope Area Air Permeability

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Changes Per Hour

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. Residential ventilation rates are calculated based on area of the residence and number of occupants.

Evaluating a Cold Roof Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has the insulation at the horizontal ceiling level and a large void or space between the insulation and the pitched roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof has the insulation running along the pitched roof rafters with an air barrier normally running parallel along the inside face of the insulation. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Site Test Procedure

Check all weather conditions such as temperature, wind speed and barometric pressure. Connect a fan to an opening, like the door, in the building fabric. Set up the equipment for air tightness testing. Note the air flow volume from the fan. This is the same as the air leakage from the building envelope. Gradually increase the speed of the fan to a maximum of 55-60Pa. Record pressure differences across the building at each fan speed.

Air Leakage Measurement

Our air leakage measurement involves picking out the gaps where air leakage takes place, recording the test information, sending results to customers in a technical report and advise clients on repair methods in the case of a test failure. Testing for Air Permeability and Following Part L Building Regulations

A low leakage building that is properly ventilated, whether natural, hybrid or mechanical, is very beneficial. The benefits are: Your heating expenses are less because heat doesn’t escape through a permeable building, and you won’t require appliances with more heating capability. A functional ventilation system Lower probability of mould because moist air won’t condense in the openings in the building envelope. Thermal comfort is enhanced because air infiltration is lower. From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. Our services include: air pressure testing, support services, re-examining designs and consultancy for all buildings in Oakwood. We are cost effective and adhere to all building regulations.


Good and Best Practice Styles

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. This regulation was put in place to conserve fuel and power. Part L1A states that new dwellings should be tested for air tightness in accordance with existing regulations.

Determining Air Leakage in buildings (Dwellings), According to Technical Standard L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. Those exceptions only occur when there are two or more dwellings in a development. Three units of a dwelling type or 50% of all examples of that dwelling type should be tested. If there are no more than two new dwellings, using an assumed value of 15m3/h/m2 in the DET/TER calculations might exempt them from air tightness testing. Your SAP assessor will be able to confirm if this is the case for your dwelling. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Both residential areas and many non-Dwellings are to take the air leakage test. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

Building Regulations Part L (England And Wales)

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

Testers can be divided into three types

  • Air tightness testing for single buildings and smaller non-dwellings not more than 4000m3 is done with a fan.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • Level Three: Testing for the air pressure of high rise (LCHR) buildings, phased handover/zonal buildings and other complex buildings is carried out by level three experts.

Report for Air Leaks Test

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. This is done according to the testing organisation’s procedures and Building Regulation standards.

Test Results

AF Acoustics will ensure the test result is written in accordance with the test standard requirements, identify any deviations from the relevant standards within the report and check air tightness against target value. We will ensure the report correctly identifies the tester, customer, building and its address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Leakage Pathway Checklist – Check will be done for visible leaks in the following places:

  • Windows: Check the seal beneath the sills and around the frames.
  • Doors: Check the seal around all external door surrounds (especially French doors).
  • Drainage traps: Check if they are filled with water.
  • Skirting and coving: Check above and below all skirting and coving, sealing where necessary.
  • Metre Boxes: Check all external supplies are sealed appropriately.
  • Light Fittings: Check the seal around all light fittings and switches.
  • Radiators / Fans / Heaters: Check the seal around all pipes and wires.
  • Boilers: Check the seal around the boiler supply and flue.
  • Extractor Fans: Check around the edge of the extracts, only the front of the grill can be sealed.
  • Cooker Hoods: Check the seals around all penetrations.
  • Soil pipes: Check the seal around all soil pipes and sink waste pipes especially those boxed in or behind kitchen cabinets.
  • Bath Panels: Check if all pipes behind bath panels are sealed properly.
  • Hot water tank: Check the seal around all supply pipes.
  • MVHR: Check seal around all terminals.
  • Chimneys: Open fireplaces must be sealed prior to our arrival.
  • Tumble drier extracts: Check the seal around the extract.
  • Junction between floor and wall under kitchens and baths

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.