Addlestone Air Tightness Testing Certified by AF-Acoustics

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

The energy performance of a building can be affected by air leakage. To address this problem, alterations to building regulations have been made. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. Located in Addlestone, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

We are registered members of the ATTMA. As a result, our air tightness certificates prove that the building requirements for your building have been met. If you want specialist air pressure testing services in Addlestone, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our services provide great value for money at high standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. Air leakage and air pressure are also used in place of air tightness. Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric (often referred to as infiltration or draughts) and not ventilation, which is the controlled flow of air in and out of the building. Air tightness testing is done to calculate the total quantity of air that escapes through cracks in the building. Such air leakage is called uncontrolled ventilation (draughts). When too much air leaks through a building’s fabric, heat loss occurs, making the occupants uncomfortable. As Government strives to reduce CO2 emissions from new buildings, building regulations now place greater emphasis on reducing air leakage from the building envelope. This reduces fuel consumption and CO2 emissions. Air tightness testing is a crucial activity that

  • shows the air leaking from gaps in a building.

The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. Incorporating this at the beginning of the construction process makes the development more cost effective and energy efficient.

Air Leakage

Air leakage occurs when air escapes through holes and gaps in a building. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. Once the atmosphere is windy, draughts infiltrate the building through holes in the fabric, leading to heat reduction and discomfort. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

What Is the Impact of Air Leakage?

Air leakage leads to a reduction in heat. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. As cold seeps inside, warm moist air escapes through the cracks and gaps in the building. Some of it settles within the building’s fabric. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. The strength of the outer wooden covering is drastically reduced because it is wet.

These problems will eventually cause structural harm to the building.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The most effective method of lessening the damage caused by moisture is to control the flow of air into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why You Should Conduct an Air Tightness Test

Air tightness is an integral element of energy efficiency. It is part of government’s plan to overcome climate change through advancements in the energy performance of buildings. Heating buildings contribute to global warming and CO2 emissions, since fossil fuels are used to create heat. Reducing air leakage reduces heat loss, which in turn reduces the amount of energy a heating system uses. Individuals living in buildings with high levels of air leakage may have medical problems. Houses. Low ventilation and uncontrolled air leaks result in mould growth and moisture which can cause potential health issues. To “Construct tight, ventilate right” is the best practice. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Is an Air Tightness Test Needed?

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The results of the test can affect a building’s energy ratings because they play a part in SBEM and SAP calculations. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. Once every building in the residential development is not tested, the expected test result would have to be lowered by 2m3/h/m2. If 5m3/h/m2 was your target score, you must achieve 3m3/h/m2.

If your building has not been pressure tested, its assessed air permeability would be the average score of buildings like yours in the area +2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

Why Pick AF Acoustics for Your Air Tightness Testing?

With AF Acoustics, homes and businesses in Addlestone have been getting quality air tightness testing. We are recommended by our clients for the following reasons.

Expert information and service

Our vast experience in serving a variety of clients in Addlestone guarantees we have the expertise to satisfy your needs regardless your unique circumstances, type or size of property. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. Our personnel will use their expertise to provide lasting solutions. Contact AF Acoustics in Addlestone –the right team for your building.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

Scheduling Your Air Tightness Testing

You can access our complete air tightness test in Addlestone at anytime. Pick a time that is convenient for you in our responsive scheduling options. There won’t be delays or complications once you’ve fixed a time.

Next-day Turnaround on Test Certificate Where Possible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Competitive Pricing

AF Acoustics, a small business with low overheads, offers one of the best prices in Addlestone and guarantees professional services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Addlestone

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. Air permeability testing calculates how much air moves through spaces in your building’s fabric. The result is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of building fabric.

Approved Document L1A and L2A requires that buildings know their air permeability rates by taking the air leakage test. The design-stage SAP assessment or SBEM of a construction records its required air permeability rate. While the law requires the highest air permeability rate to be 10m3/h/m2, your building might have to get a lower rate to meet the carbon emissions target. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. To get signed off by building control in Addlestone, all buildings are to undergo air tightness testing and measure up to the required energy efficiency standards. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. This increases the company’s productivity and lowers heating and cooling expenses.

A Description of Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Air tightness is referred to as air permeability or leakage rate. Air leakage can happen via holes and splits in the texture of the building envelope (divider/rooftop sections, service penetrations, etc), which may not be obvious. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air permeability is key in the following areas: i. A construction’s energy performance, ii. CO2 emission targets iii. Building Regulations Part L standards

Part F Test Explained

All your Part L and Part F testing requirements can be met by us. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) has made a presentation of evidence of the test a compulsory aspect of a building’s sign-off process. Extractor fans can be tested and recorded, and test reports submitted using 3 methods. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


Types of Air Leakage Testing Services We Offer

Here are the descriptions of the ways air permeability can be tested: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high rise (LCHR) buildings. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air pressure testing, involves the calculation of air escaping through openings in a building. The result is expressed as a quantity in the form of m3 per hour, per square metre of building fabric. Part L1A of Building Regulations stipulates that such tests be conducted. The carbon discharge requirement for all buildings reduces the air permeability rate target. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air pressure testing involves the calculation of air escaping through the openings in a building. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Air tightness testing is required by Building Regulations. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and draught.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. The automatic-opening vents are a key part of the fire strategy for multi-storey buildings to extract smoke in the case of a fire. The performance of the fans and vents depends on the air tightness of the shaft. Air tight shafts have enough pressure difference to extract smoke and save people inside a building during fire emergencies. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. The shaft undergoes air leakage testing when fans are placed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. Smoke shaft tests occur before installing and commissioning automatic opening ventilation.

We Offer Extraction Fan Testing

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We test fan extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Part F Building Regulations also require standard intermittent extractor fans in new buildings (such as bathroom and kitchen extractors) to have their air flow rates measured on site and the results submitted to the building control body before completion.

Air Tightness Test and Building Preparation Method

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. We recommend that all buildings be tested as those that aren’t are penalised.

Pre-Test Requirements

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. To prepare the site for the test, do the following:

  • Shut the windows
  • Close the smoke vents
  • Open and secure all inner doors
  • Put off the mechanical vents
  • Close ventilation
  • Fill drainage traps
  • Put off range cookers/stoves a day before the test (if applicable)

How We Measure the Building Envelope

We conduct building envelope calculations prior to the test. A building envelope is the boundary between the conditioned and unconditioned environment of a building. We use the building envelope measurements to get the right results when testing for air tightness.

Air Permeability of the Envelope Area

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Air changes per hour are crucial to ventilation design, but it is only occasionally used as the base for the design or calculation. The number of inhabitants and area of residence are used in measuring residential ventilation rates.

Measuring a Cold Roof Construction’s Envelope Area

The area of the roof and ground floor should be the same. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Evaluating a Warm Roof Envelope Area

A warm roof has the insulation running along the pitched roof rafters with an air barrier normally running parallel along the inside face of the insulation. The envelope area is the boundary or barrier containing the overall internal ‘conditioned space’ separating it from the external environment (or non-conditioned spaces and adjacent buildings), and this is located on the warm side of the insulation.

Preparing the Building

  • Shut all windows
  • Close the smoke vents
  • Shut and secure all inner doors
  • turn off the mechanical vents
  • Temporarily seal vents
  • Fill and block drainage traps

Building Test Method

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan to an opening, like the door, in the building fabric. Set up testing equipment. Calculate the air flow volume through the fan which equates to the air leakage. Raise the fan speed from 20-25Pa to the highest speed of 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Evaluating Air Leakage

Our air leakage measurement involves picking out the gaps where air leakage takes place, recording the test information, sending results to customers in a technical report and advise clients on repair methods in the case of a test failure. Air Pressure Testing & Compliance

A low leakage building that is properly ventilated, whether natural, hybrid or mechanical, is very beneficial. The benefits are: The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. Better performing ventilation system Lower levels of mould due to less moisture collecting in gaps and cavities. Fewer draughts, causing more comfort Our air leakage tests are conducted according to building regulations and targets, whether we’re testing a small dwelling or big commercial development. Not only do we provide services that meet building regulation targets, when you employ our services, you’ll save money and spend less in the long run. We test for air permeability, provide consultancy services and support services and review the designs of all buildings, whether domestic or commercial, large or small.


Best Practice Processes

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. The regulation helps to reduce the use of fuel and power. Part L1A states that new dwellings should be tested for air tightness in accordance with existing regulations.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. BS EN 13829:2001 and ISO 9972:2015 are clarified by the technical standards. The technical standards provide rules that ensure testing organisations get the same results from the same kind of tests and are based on BS EN 13829 “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015, “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

If you are constructing a dwelling the Approved Document L1A states that you must perform an air pressure test. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. If there are no more than two new dwellings, using an assumed value of 15m3/h/m2 in the DET/TER calculations might exempt them from air tightness testing. Your SAP assessor will let you know if you can do this for your building. The required process for testing buildings for air tightness has been declared in ATTMA TSL1 for occupied buildings and ATTMA TSL2 for unoccupied ones. Non-Dwellings and residential buildings are required to test for air leakage. Buildings with a floor area of less than 500 m2 might not have to take the test. Where air tightness testing is not done, an assumed air permeability rate of 15 m3/h/m2 is used.

Building Regulation Requirements Part L (England and Wales)

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Testers can be divided into three types

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • Level 2: Testers can test all buildings except large, complex and or high-rise buildings and or phased handover or zonal buildings unless part of a team managed by a level 3 tester.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report for Air Leaks Test

Authorised companies, who test buildings of different types, sizes and complexities, give air tightness reports. First, extraction fans are closed. Then, the details and results of the tests are written down in a report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Outcomes

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. Our reports correctly note the client, air tightness tester, building and address. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Permeability Pathway Checklist – Use this checklist to make sure you are ready for the test. Ask yourself, “Have I sealed any visible opening?” Check the following appliances.

  • Junction between floor and wall under kitchens and baths
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Windows
  • Metre boxes
  • Hot water tank
  • Chimney
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Drainage traps

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.