ATTMA Licensed Air Tightness Testing in Aylesbury

Air tightness testing, also known as air leakage testing or air permeability testing, establishes the rate at which air flows out of gaps in a building fabric. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. Our certificates for air tightness testing are registered with the Air Tightness Testing and Measurement Association (ATTMA), a professional body that focuses on high quality air tightness testing and air permeability applications. We are dedicated and accredited air leakage testing service providers in Aylesbury and we are available to provide you with testing services whenever required. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. If you want specialist air pressure testing services in Aylesbury, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. Air leakage and air pressure are also used in place of air tightness. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. Unrestrained air movement leads to heat reduction, making the inhabitants of the building uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. With air tightness testing, you can determine whether or not air is leaking from a building’s envelope, the build quality and energy efficiency of new developments. Most building designs take air pressure into account at the beginning of construction in order to have an air-tight envelope and measure up to the required standards. When the building fabric is properly constructed to reduce air loss, the building is economical, and energy efficient.

What Is Air Leakage?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. It is not the same as ventilation which is regulated air flowing into a building. It is also called infiltration. Because of the nature of air leakage, excessive air infiltration might occur in a building when the weather is windy and chilly. This results in loss of warmth and an unpleasant cold draughts. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. Air tightness testing is compulsory for all new constructions and non dwellings with a floor area over 500m² in England and Wales. This came into effect in 2006.

The Impact of Air Leakage

Heat loss within a building can be caused by air leakage. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. Once the moist air reaches the colder internal layer of the wall structure, the vapour in it condenses and forms droplets of liquid, which drawn into building materials and can potentially start a multitude of structural problems. Wooden sheathing or overlay becomes wet, making it weak.

Over time, any of these conditions can cause structural damage.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Passive or active ventilation is required to reduce water vapour, moisture odour and pollutants.


Why Should We Do an Air Tightness test?

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. The best way to reduce the quantity of fossil fuel burnt is by stopping air leakage which reduces heat loss. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. Best practice advice is to “Build tight, ventilate right”. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Should an Air Tightness Test Be Done?

Best practice dictates that you complete an air tightness test early in the build process, and then again after the construction process is completed; although not all builds have the first test phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. With selective testing, you get a penalty of +2m3/h/m2. Houses that have a target score of 5m3/h/m2 must get a lower score of 3.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. Selective testing is not recommended because: i.It is quite tough to achieve the lower air permeability rate set for untested dwellings. ii.The proper air tightness rate for each building in the development cannot be attained, as only some underwent air tightness testing; a tested building might be much tighter than an untested one.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Numerous businesses and home owners have been aided by AF Acoustics air tightness testing proficient skills in Aylesbury. We come highly recommended by our clients because of the following guarantees.

Helpful service and information

Our vast experience in serving a variety of clients in Aylesbury guarantees we have the expertise to satisfy your needs regardless your unique circumstances, type or size of property. Our accredited air testing experts are polite and competent. They are trained to provide the service you need and fit around your project. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in Aylesbury.

Air Tightness Testing and Measurement Association (ATTMA) Registered

We are registered members of the ATTMA, a professional association dedicated to promoting technical excellence in air tightness testing and air leakage measurement applications. This means our expertise and quality of services are recognised by the leading air tightness testing body in the UK.

Scheduling Your Air Tightness Testing

We want to provide detailed air permeability testing in Aylesbury for you whenever you need it. Pick a time that is convenient for you in our responsive scheduling options. There won’t be delays or complications once you’ve fixed a time.

Next-day Turnaround on Test Certificate Where Possible

AF Acoustics has professional speedy services to satisfy clients who want their test results immediately. We have a next day turnaround policy for our test certificates and endeavour to deliver in all situations.

Affordable Fees

AF Acoustics, a small business with low overheads, offers one of the best prices in Aylesbury and guarantees professional services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in Aylesbury

We conduct air permeability tests on residential and commercial buildings of all sizes and types. After the test, an ATTMA certificate is given to you. An air leakage test is used to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of building fabric.

Air tightness testing is recommended by Approved Document L1A and L2A. Although your building is required to have a rating result of 10m3/h/m2, the actual result might have to be lower than that due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment or SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

The warm air within a building rises, leading to the influx of cold air through gap, cracks and other openings in the building envelope. The increasing difference in air pressure results in infiltration and exfiltration of air. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Aylesbury. Buildings where businesses are conducted will not cause discomfort to employees and clients because they have the legal air permeability rating. The company also gets reduced heating and cooling costs and higher productivity rates.

The Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness is also called air leakage rate or ‘air permeability’ rate. Any hole or crack in a building fabric is a spot where air leak can take place. Air leakage points are not often visible. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. Part L has also set a maximum air permeability target rate of 10m3/h/m2, but a building usually needs lower levels. Air leakage affects the building’s energy performance and is required to meet Building Regulations Part L and measure up to the standard for low carbon buildings.

Part F Test Explained

We can complete all your Part F and Part L testing requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. There are 3 available methods for examining, recording and reporting the testing of extract fans. AF Acoustics employs the minimum benchmark procedure (method 3), which involves using a vane anemometer.


Types of Air Leakage Testing Services We Offer

There are different levels of air tightness testing established from the size and complexity of a building. An overview of each is provided below: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. Air tightness testing for phased, zonal handover and LCHR constructions is done.

Testing of Air Permeability of Residences and Apartments, in Accordance with Document L1 Stipulations

Air pressure testing, involves the calculation of air escaping through openings in a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Document L1A of Building Regulations declares air leakage testing to be mandatory. The carbon discharge requirement for all buildings reduces the air permeability rate target. The required rate can be found in a building’s design-stage SAP assessment SBEM. Excess air leakage causes heat loss and discomfort due to the influx of cold air, also causing increased energy bill expense.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result of the air leakage test is expressed as a quantity of air leakage (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L2A. The maximum air permeability rate for a dwelling tested is 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Excess air leakage causes heat loss, greater carbon dioxide discharge and influx of cold air.

We Test Your Automatic Opening Vent’s Smoke Shaft

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. Automatic opening vents are crucial during fire emergencies in storey buildings, as they clear out smoke from the buildings. For the vents and fans to operate at the expected level, the smoke shaft must be air tight to create a difference in air pressure and give emergency services when needed. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. The shaft undergoes air leakage testing when fans are placed inside it. Then the openings are sealed off in all its parts so that the shaft can be thoroughly examined. This test is conducted before the automatic opening ventilation is fixed and commissioned.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. We have the capacity to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Specific Test and Building Preparation Procedure

Air tightness test determines the level of air permeability in a building. The air tightness of a building improves its energy efficiency and internal environment.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

At least 20% of different kinds of dwellings in a development have to be tested, according to new regulations; but the reliability of the sample from this type of testing is determined by the types of buildings in the development. We recommend that all buildings be tested as those that aren’t are penalised.

Requirements before the Test

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Shut the windows
  • Close the smoke vents
  • Open and secure all inner doors
  • Put off the mechanical vents
  • Close ventilation
  • Fill drainage traps
  • Put off range cookers/stoves a day before the test (if applicable)

Building Envelope Calculations

We conduct building envelope calculations prior to the test. The building envelope is the surface area of the thermal boundary of the building. The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Air Permeability of the Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Exchange Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Measuring a Cold Roof Construction’s Envelope Area

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof has its insulation at the ceiling level, with space between the insulation and rafters.

Warm Roof Envelope Area Measurement

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Building readiness

To get the building ready, close and secure all internal doors, windows, Temporarily seal vents and smoke vents. Also fill drainage traps.

Process for Testing the building

Examine the wind speed, barometric pressure and temperature. Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Fix the instrument for testing. Calculate the air flow volume through the fan which equates to the air leakage. Gradually increase the speed of the fan to a maximum of 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Evaluating Air Leakage

Our competent engineers note the points of air leakage, examine the test data and send test results to the customer in a technical report. If the test fails, we inform clients on what to do about it. Testing for Air Permeability and Following Part L Building Regulations

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): The occupants will pay less for heat because less heat is lost and they won’t need equipment with high heating capacities. A functional ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped You won’t experience much discomfort because there will be fewer draughts. From the smallest to biggest building or development, we adhere to Building Regulations Part L and Building Standards. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in Aylesbury. We also provide cost-effective, local service that complies with all relevant Building Standards.


Good & Best Practice Methods

When constructing a new building, it should be built air tight, as stated by Building Regulations – Approved Document L1A. Less fuel and power are consumed by buildings. The dwelling should be tested for air permeability in line with existing building standards, as stipulated by Approved Document Part L1A.

Testing for Air Permeability on Building Fabrics, According to L1 Technical Standard.

Certain technical standards are to be employed during air pressure test in the UK, as specified by ATTMA, building regulations and other documents. The technical standards give details regarding the following: BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”. That way, testing companies use the same method.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

If you’re constructing a new dwelling, you have to comply with Approved Document L1A’s stipulation to test it. Where there are two or more new buildings in an area, conduct a test on 50% of all examples of a kind of dwelling or 3 units of a dwelling kind. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. Your SAP assessor will be able to confirm if this is the case for your dwelling. The required process for testing buildings for air tightness has been declared in ATTMA TSL1 for occupied buildings and ATTMA TSL2 for unoccupied ones. Air tightness tests are to be carried out on all residential developments (all the buildings or a selected group) and all certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Building Regulations Part L (England And Wales)

An industry-wide competence scheme endorsed by the government is carried out by the ATTMA. It was launched in January 2015 as stipulated in the Technical Standard L1 and L2. It is based on the performance criteria and knowledge requirements set out in the suite of National Occupation Standards (NOS) and under the requirements of the Minimum Technical Competence (MTC) document.

Air tightness testers can be divided into three categories

  • Level 1: Testers can test dwellings and non-dwellings up to 4000m3 gross envelope volume when tested as a single entity, with a single fan.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report for Air Leaks Test

Air leakage test reports are given by authorised organisations that test different buildings. Extraction fans will be sealed temporarily; the results of the test are recorded in a short report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Outcome of Air Leak Test

We analyse our tests and results for any divergence from the standards required and check the air pressure rate against target rate. That way, our results are expressed in line with test standards. The identity of the customer, tester, building and address are correctly written in our report. If a building fails the test, we provide remedial suggestions before a retest is carried out.

Resources Air Tightness Checklist – Building

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.