Heathfield Air Tightness Testing, Licensed by AF-Acoustics

Air tightness testing determines the quantity of air coming out of cracks in a building. It is also known as air permeability testing or air leakage testing. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Because air leakage is the process whereby air escapes through any crack or hole in the building envelope and influences its energy performance, building regulations have been modified to ensure a building has adequate air tightness. We register our air tightness certificates with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that encourages proper air leakage applications and promotes quality air tightness screening. Located in Heathfield, our company is a committed and accredited air permeability testing service provider; we provide air testing services. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Our air leakage test certificate is approved by ATTMA and is an indication that a building has been signed off by building control. We are professionals who take the time to explain the testing process, we are able to give informed advice on where problem areas may occur during testing, and how improvements can be made based on results of air pressure testing. Our customers get greater value for money spent, and our testing services are of superior quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What It Means

When a building is assessed during an air tightness test; the internal thermal envelope of the building is examined for leakages and the quantity of air passing through it. It can also be called air pressure testing or air leakage testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Air tightness testing is vital in determining the energy efficiency of a new building, air leakage and the build quality. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. A building that is air tight A building that is air tight is more economical and ensures less drafts ALS energy efficient.

What Is Air Leakage?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. When the circulation of air is properly monitored and bridled, ventilation has occurred. Another name for air leakage is infiltration. It leads to heat deprivation when cold draughts happen and warmth is needed the most. Because air leakage is uncontrolled ventilation, excessive air flows into the house during windy and wintry weather. How do you know if a building is energy efficient? By testing its air permeability. This lets the occupants know if the building meets standard air-tightness requirements. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

Effects of Air Leakage

When air escapes uncontrollably from a building, heat reduction occurs. During windy weather, cold air infiltrates a building through the openings in its fabric. This results in heat loss. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. When moist air hits a cooler surface within a wall structure, water vapour in the air can condense and collect inside these spaces. Moisture can then be absorbed in building materials and cause serious defects. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

The building becomes structurally damaged as time goes on.
The inhabitants become uncomfortable because of chilly homes, heating expenses increase and more CO2 is emitted due to the additional heat required.

The most effective method of lessening the damage caused by moisture is to control the flow of air into and out of the building. Air leakage and vapour diffusion are minimised when barriers are installed. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why is an Air Tightness Test Important?

The energy performance of a building is determined by how air tight it is. Energy performance affects CO2 released from buildings. As a result, air tightness testing is a method government has devised to regulate climate change. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. A reduction in air leakage lessens the heat needed to keep a building warm. Poor degrees of ventilation and high levels of uncontrolled air leakage encourage mould growth and excessive moisture. This could potentially cause medical issues. Best practice advice is to “Build tight, ventilate right”. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Is an Air Tightness Test Needed?

It is best practice to conduct at least two air tightness testing procedures, one early in the build and another at the end. Newly completed constructions’ energy ratings can be influenced by the test results, as they are used in SAP and SBEM calculations. For big residential developments, the test is not required for each house. A group of diverse buildings are picked for the test. Selective testing has a penalty of +2m3/h/m2. If target score is 5m3/h/m2, air tightness test score will have to be 3m3/h/m2.

buildings that have not been tested are assessed for air permeability based on similar dwellings’ test scores +2m3/h/m2 at 50 Pa. This type of testing does not reveal the exact air tightness of each residence and is therefore not advisable. Moreover, the penalty implemented on untested buildings makes the required air permeability rate difficult to attain.

Why Pick AF Acoustics for Your Air Tightness Testing?

Business owners and home owners in Heathfield have been helped by AF Acoustics air tightness testing. Our customers highly recommend us to other people due to the following benefits.

Expert information and service

Having served many clients in Heathfield, we have the expertise to work on any type or size of building. We’ll work with you to carry out our tests and consultations at times that are convenient to you, delivering an exceptional quality, convenient service. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Registered member of the Air Tightness Testing & Measurement Association (ATTMA)

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

Responsive scheduling

We want to provide detailed air permeability testing in Heathfield for you whenever you need it. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. We won’t make you wait or make the process complicated.

You Could Get Your Certificates on the Next Day

AF Acoustics has professional speedy services to satisfy clients who want their test results immediately. We have a next day turnaround policy for our test certificates and endeavour to deliver in all situations.

Competitive Charges

Save money by paying lower rates at AF Acoustics. As a business with low overheads, we’re able to give you one of the best air leakages testing services in Heathfield at reduced costs.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Heathfield

Whatever the type and size of a domestic or commercial building in Heathfield, AF Acoustics’ experts can test it for air permeability and issue an ATTMA certificate afterwards. Air tightness test checks the extent of uncontrolled air moving through openings in the building envelope. The result of the air leakage test is expressed as a quantity in the form of The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Approved Document L1A and L2A demands that buildings take tests for air leaks. Although your building is required to have a rating result of 10m3/h/m2, the actual result might have to be lower than that due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment or SBEM. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and discomfort. It can also create convective loops within a building; this is often referred to as thermal bypassing and wind washing. Infiltration/exfiltration is the effect of air pressure difference. Warm air rises while cold air falls. The warm air within a building rises and air pressure at the base falls; this results in air coming in through doors, windows and leakage points. Air permeability testing is a legal requirement for constructions in Heathfield. This way, they can have high energy performance, meet building regulations requirements and get signed off by building control. Clients and employees will be at ease in their surroundings. Heating and cooling expenses are also reduced and the environment is more productive.

Part L Test

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness can also be called air leakage or air permeability rate. Air leaks through gaps and spaces in the building fabric such as service penetrations, walls and roof junctions. Sometimes, this is not obvious to occupants. Part L of the Building Regulations requires that all commercial buildings greater than 500m2 undergo air tightness testing and a selection of residential buildings in a development be tested. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

Part F Test Explained

We can provide you all that you need to serve all your Part L and Part F requirements. With our organisation, you receive:

  • Expert fan flow rate testing
  • Experienced air pressure testing
  • Professionals who provide Energy Performance Certificate, water and SAP calculations.

Approved Document F of the Building Regulations demands that all mechanical extract fans in newly completed constructions undergo a flow rate test. Your building won’t be signed off until Building Control Body (BCB) has been presented the results of the test. You can test, document and report the test of your building’s extractor fans in three ways. AF Acoustics employs the minimum benchmark procedure (method 3), which involves using a vane anemometer.


What Kinds of Air Tightness Testing Services Do We Offer?

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: First Level – For building 1m3-4000m3, single and smaller non-dwellings, a single blower door fan is used to carry out the test. Air tightness testing for dwellings more than 4000m3, except big phased handover/zonal and high rise (LCHR) constructions is done. The third level tests big and complex zonal and phased buildings and complex high rise buildings.

We Offer Air Leakage Testing of Apartments and Houses to Meet Approved Document L1 Standard

Air pressure testing, involves the calculation of air escaping through openings in a building. The result is written as m3 per hour per square metre of building. Air leakage testing is a requirement of Approved Document L1A. Your building may need a lower rate to meet the CO2 discharge target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Uncontrolled ventilation can cause several problems. They are: infiltration of cold air, reduction in heat, more CO2 emission and higher energy costs.

We Offer Air Leakage Testing of Business Buildings to Meet Approved Document L2A Standard

Air leakage testing is the measurement of uncontrolled ventilation from a building’s fabric. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Part L2A of Building Regulations has demanded that such tests be conducted. Each building tested must achieve a maximum air permeability rate of 10m3/h/m2. Your building may need a lower air permeability rate to meet the SAP or SBEM assessment. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. An excessive amount of air leakage leads to greater energy expenses, heat reduction, carbon dioxide discharge and draughts.

Air Leakage Test of Smoke Shafts for Auto Vents

We undertake smoke shaft integrity testing to confirm that the shaft is sufficiently air tight in order to allow the automatic opening ventilation to perform as required when it is fitted and commissioned. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. To ensure that automatic opening ventilations work properly, their manufacturers have placed an air permeability target for them which we work towards. The shaft undergoes air leakage testing when fans are placed inside it. Once the fan is fixed, the extract points and ventilation grilles on each storey are sealed to ensure that the shaft is in proper condition. The test takes place in advance of the automatic-opening ventilation equipment being installed and commissioned.

Domestic Ventilation Air Flow Testing (Extract Fans)

With the legal requirement for buildings that have the right quantity of air pressure, adequate ventilation that is suitable, effective and of high quality has become crucial. Extract fans are tested by us. This has not only been made compulsory by Building Regulations; it also helps reduce humidity in rooms, bathrooms and kitchens and expel pollutants. Building Regulations Part F also requires that the air flow test of all extractor fans (such as kitchen and bathroom extract fans) in new buildings to be conducted and results given to Building Control before construction ends.

Particular Test and Building Readiness Operation

Air tightness test determines the level of air permeability in a building. The air tightness of a building improves its energy efficiency and internal environment.

Gaps and cracks in the building that cause air leakage are often difficult to detect. They may be obscured by the internal building finishes. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

With residential buildings in an area, new building regulations demand that a minimum of 20% be measured for air leakage. Consistent samples are determined by the quantity of the different types of houses present during the construction of the project. We recommend that all buildings be tested as those that aren’t are penalised.

What Should You Do Before Testing Your Building?

The client needs to send our test engineers the drawings of the development (plans and elevations) and target air permeability requirements. This is to have the needed information for the building and to know the size of the building envelope before coming to the site. Air tightness testing lasts for 30 to 60 minutes and wind speed is not more than 6m/s. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Building Envelope Measurement

We undertake building envelope measurements before getting to the dwelling for the test. The building envelope is the surface area of the structural barrier of a building. It separates the interior from the exterior part of the dwelling The calculations are taken from the drawings. These are then incorporated into our calculations when we air test the property.

Air Barrier Envelope Area

Air permeability, according to Approved Document L1A (2010), has to do with “air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2)”. The building’s envelope area has to do with the total area of all the floors, walls, and ceilings bordering the internal environment, including those below external ground level. These include shared walls, floors and ceilings in storey buildings. Internal dimensions are used to measure the envelope area.

Air Exchange Rate

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Cold Roof Envelope Area Measurement

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof is a roof that has the thermal insulation put in the ceiling with wide space between the insulation and pitched roof rafters.

Evaluating a Warm Roof Envelope Area

A warm roof is a roof system where the insulation is fixed along the rafters with an air barrier inside the insulation. The envelope area, found at the insulation’s warm side, is the separator between the conditioned internal aspect and the unconditioned.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

Building Test Method

Examine the wind speed, barometric pressure and temperature. Connect a fan to an aperture within the construction envelope. For example, the door. Set up testing equipment. Calculate the air flow volume through the fan which equates to the air leakage. Raise the fan speed from 20-25Pa to the highest speed of 55-60Pa. Record how the air pressure differs at each fan speed.

Evaluating Air Leakage

Our air leakage measurement involves picking out the gaps where air leakage takes place, recording the test information, sending results to customers in a technical report and advise clients on repair methods in the case of a test failure. Testing for Air Permeability and Following Part L Building Regulations

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Lower energy costs and need for heating appliances due to a higher level of heat retention. Better performing ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped You won’t experience much discomfort because there will be fewer draughts. Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in Heathfield. We also provide cost-effective, local service that complies with all relevant Building Standards.


Good and Best Practice Standards

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. The regulation helps to reduce the use of fuel and power. The dwelling should be tested for air permeability in line with existing building standards, as stipulated by Approved Document Part L1A.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. They explain in detail and provide guidelines for BS EN 13829:2001: “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” and ISO 9972:2015: “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method”.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

England and Wales: Building Regulation Targets Part L 2010

Test for air permeability must be conducted on your new constructions. This is stated in Approved Document L1A. For developments of two or more dwellings, an air leakage test should be carried out on the three units of each dwelling type; or 50% of all instances of that dwelling type. If the development has one or two dwellings only, an air tightness test might not be taken if the DET/TER calculations assume a value of 15m3/h/m2. Your SAP assessor will be able to confirm if this is the case for your dwelling. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Both residential areas and many non-Dwellings are to take the air leakage test. A building might not have to undertake the air leakage test if its floor space is less than 500m2 or its DET calculations have an air permeability rate of 15 m3/h/m2 added to it.

Building Regulations for England and Wales, Part L

ATTMA has a competent scheme for air leakage testing firms which determines their level of competence. The scheme, which was launched in January 2015, is recognised by the government and noted in the building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

Air pressure testers have three levels

  • Level 1: Testers can test dwellings and non-dwellings up to 4000m3 gross envelope volume when tested as a single entity, with a single fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • The third level expert tests big and complex zonal and phased buildings and complex high-rise buildings.

Air Tightness Test Report

Air leakage test reports are given by authorised organisations that test different buildings. Extraction fans will be sealed temporarily; the results of the test are recorded in a short report. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. We will ensure the report correctly identifies the tester, customer, building and its address. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Building

Go through the list below and send the design air testing permeability value to us before we get to the site.

Air Leakage Pathway Listing – You must ensure the following are properly sealed and don’t have any openings.

  • Windows
  • Metre boxes
  • Extract fans
  • Hoods of cookers
  • Bath panel
  • Hot water tank
  • Chimney
  • Tumble drier extracts
  • MVHR
  • Soil panel
  • Boilers
  • Radiators, fans and heaters
  • Skirting and coving
  • Drainage traps
  • Junction between floor and wall under kitchens and baths

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.