Air Tightness Testing, Certified by AF-Acoustics, in East-Dulwich

Air tightness testing determines the quantity of air coming out of cracks in a building. It is also known as air permeability testing or air leakage testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. Our Air Tightness Testing certificates are registered with Air Tightness Testing and Measurement Association (ATTMA), a professional association dedicated to promoting technical excellence in all air tightness testing and air leakage measurement applications. AF Acoustics, a licensed air tightness testing company, is available to provide testing services at your request. Our address is East-Dulwich. You can also call or email us for any of these services:

  • Assessments
  • Consultancy
  • Part F mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. We provide air leakage testing in a professional manner by explaining the testing procedures and highlighting leakage areas in the building fabric. We also suggest long-term remedies based on the results of the tests. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What It Means

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. Other names for air tightness testing are air leakage testing and air pressure testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Air tightness testing is done to calculate the total quantity of air that escapes through cracks in the building. Such air leakage is called uncontrolled ventilation (draughts). An excessive amount of uncontrolled air loss results in heat reduction, making the residents uncomfortable. Regulations now concentrate on minimising air leakage from the building envelope thereby reducing the amount of fuel burned for maintenance. This helps reduce carbon dioxide emissions. Air tightness testing is important in establishing air leakage from a building’s fabric, the energy efficiency of a new building and in identifying poor build quality within new developments. The building regulations have made air tightness part of the building’s design from the beginning of the construction. This ensures that the fabric of a building is air tight. Incorporating this at the beginning of the construction process makes the development more cost effective and energy efficient.

What Air Leakage Is

This occurs when openings in a building lead to excess air flow into and out of the building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. It may cause uncontrolled influx of air during frosty and windy weather. This reduces the temperature of the building, making the occupants uncomfortable. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. In 2006, air tightness of newly constructed buildings and non-dwellings with a floor area over 500m² became compulsory in England and Wales.

What Is the Impact of Air Leakage?

When air escapes uncontrollably from a building, heat reduction occurs. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. As cold seeps inside, warm moist air escapes through the cracks and gaps in the building. Some of it settles within the building’s fabric. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

Over time, any of these conditions can cause structural damage.
Air leakage can also cause these problems:

  • Colder homes that result in discomfort
  • Higher heating expenses
  • Reduction in CO2 emissions’

The best way to reduce the harmful effect of moisture is to efficiently control how air moves into and out of the building. Air leakage and vapour diffusion are minimised when barriers are installed. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why Should We Do an Air Tightness test?

Air tightness is an important factor in a building’s energy efficiency and is part of government’s plan to battle environmental change by regulating the energy performance of buildings. Fossil fuel is burnt to heat up a building. This leads to a discharge of carbon dioxide which increases global warming. A reduction in air leakage lessens the heat needed to keep a building warm. Uncontrolled air leakage also results in health problems. Coupled with poor air circulation, it leads to the growth of mould and mildew. Best practice advice is to “Build tight, ventilate right”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

Recommended Period for Air Tightness Test

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

Where the dwelling has not been pressure tested, the assessed air permeability is the average test result obtained from other dwellings of the same dwelling type on the development, increased by +2.0 m3/h/m2 at 50 Pa. Because selective testing does not conduct tests for all buildings, a tested building might have a much higher air tight rate than an untested building; making it unreliable. The 2m3/h/m2 penalty added to untested buildings makes the air permeability rate hard to achieve.

Why Pick AF Acoustics for Your Air Tightness Testing?

With AF Acoustics, homes and businesses in East-Dulwich have been getting quality air tightness testing. We come highly recommended by our clients because of the following guarantees.

Helpful service and information

Due to years of experience in conducting air tightness testing in different kinds of buildings in East-Dulwich, we have the skills to meet your needs no matter the type or size of your property. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. If you need knowledgeable and trustworthy air leakage experts who can provide exemplary results, AF Acoustics is the team you need in East-Dulwich.

We Are Registered Members of the Air Tightness Testing and Measurement Association (ATTMA)

We are registered with ATTMA, a professional body that focuses on high quality air tightness testing and air permeability applications. This means our services are endorsed by the leading air leakage testing body in the UK.

When Can You Call Us to Test Your Building?

We want you to be able to access comprehensive air tightness testing in East-Dulwich whenever you need it. We have responsive scheduling options. Schedule for your air leakage testing at your comfort. We guarantee that there will be no delays or difficulties.

Test Certificates Get to You on the Next Day, Where Feasible

Our customers are eager to get their test results. AF Acoustics, which provides reliable, competent services, strives to issue test certificates on the next day.

Affordable Fees

AF Acoustics, a small business with low overheads, offers one of the best prices in East-Dulwich and guarantees professional services.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

We Conduct Tests for All Types of Buildings in East-Dulwich

We can test any building in East-Dulwich for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The results are registered as The test results are described as m3/h/m2 – (m3 per hour) per square metre of building.

Air leakage testing is required by Approved Document L1A and L2A. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. The warm air within a building rises, leading to the influx of cold air through gap, cracks and other openings in the building envelope. The increasing difference in air pressure results in infiltration and exfiltration of air. To get signed off by building control in East-Dulwich, all buildings are to undergo air tightness testing and measure up to the required energy efficiency standards. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. In addition, you get lower heating and cooling costs. A comfortable environment results in a higher productivity rate.

The Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Air tightness is also called air leakage rate or ‘air permeability’ rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. It is compulsory for all commercial buildings with a gross area greater than 500m2 and a representative selection of domestic buildings to undergo air pressure test, as stipulated by Part L of the Building Regulations. To comply with Part L the measured air permeability minimum requirement is 10m3/h/m2 but usually your air permeability target will be much lower. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

What Is Part F Test?

We can complete all your Part F and Part L testing requirements. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. The Building Control Body (BCB) has to see the results of the test as part of its sign-off procedure. There are 3 available methods for examining, recording and reporting the testing of extract fans. AF Acoustics test process is the third method. It uses a vane anemometer and is called the minimum benchmark method.


Types of Air Leakage Testing Services We Offer

Air Tightness Testing has different tiers, depending on how complex a building is and its size. Find them below: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

We Offer Air Leakage Testing of Apartments and Houses to Meet Approved Document L1 Standard

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3 per hour per square metre of building. Air leakage testing is a requirement of Approved Document L1A. Your building may need a lower rate to meet the CO2 discharge target. The required rate can be found in a building’s design-stage SAP assessment SBEM. Uncontrolled ventilation can cause several problems. They are: infiltration of cold air, reduction in heat, more CO2 emission and higher energy costs.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

Air pressure testing involves the calculation of air escaping through the openings in a building. The result is expressed as a quantity in the form of air pressure (m3 per hour) per square metre of building fabric. Document L2A of Building Regulations declares air leakage testing to be mandatory. The results of air permeability rate should not exceed 10m3/h/m2. The result of your dwelling’s air permeability rate might have to be lower than required due to SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Uncontrolled air leakage can cause several problems. They are: infiltration of cold air, discomfort, reduction in heat, and higher CO2 emission rate.

Air Leakage Test of Smoke Shafts for Auto Vents

Smoke shaft needs to be tested because its air tightness determines the performance of the automatic opening vent fitted on it. Our professionals perform the test. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. For the fans and vents to perform as required, the shaft itself must be sufficiently air tight so as to create the pressure difference to draw smoke out of the building and protect the occupants. We work towards air permeability targets set by the automatic-opening ventilation manufacturers that allow their equipment to operate effectively. An air pressure test is taken for the smoke shaft by installing a fan inside. Then the openings are sealed off in all its parts so that the shaft can be thoroughly examined. This test is conducted before the automatic opening ventilation is fixed and commissioned.

Testing Extraction Fans for Air Flow

Buildings that are well insulated and air tight are the standard for buildings. As a result, a high-quality ventilation system that is adequate and performs as required is vital. We evaluate extraction rates. It is important to ensure the ventilation strategy is working effectively. This helps to remove pollutants from the air and control excess humidity, particularly in rooms such as bathrooms and kitchens. Part F states that all new constructions must have intermittent extractor fans whose air flow rates will be calculated and the results given to Building Control before the building work is finished.

Precise Air Pressure Test and Building Procedure

Air tightness tests calculate the level of air leakage a building has and if it is excessive. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

Gaps and cracks in the building that cause air leakage are often difficult to detect. They may be obscured by the internal building finishes. To ensure that the air tightness of a building is optimal, gaps and spaces in the building have to be found and measured.

The new regulations stipulate that at least 20% of dwellings in a development be tested, but having a harmonious sample is dependent on the kind of buildings in the development. We advise that all buildings undergo air pressure testing as there is a penalty for those that don’t.

What You Need to Do Before Undertaking the Test

Send the drawings of your dwelling (plans and elevations) and its target air permeability requirements to our test engineers. We would like to know the requirements and the building envelope’s size prior to testing. The tests take 30 – 60 minutes, and wind speed does not surpass 6m/s. In preparing the site to create an air-tight environment:

  • Turning off all range stoves and cookers (if applicable)
  • Turning off mechanical vents
  • Shutting all windows and external doors
  • Sealing ventilation grids and smoke vents
  • Filling the drainage stops

Calculating the Building Envelope

We take the building envelope calculations before the test. The building envelope, is the physical barrier between the exterior and interior of a construction. The building envelope calculations are taken from the drawings and used for our air tightness testing.

Air Permeability & The Envelope Area

It is defined as air leakage rate per hour per square metre of envelope area at the test reference pressure differential of 50 pascals (50n/m2). The envelope area, or measured part of the building, is the total area of all floors, walls and ceilings bordering the internal volume that is the subject of the pressure test. This includes walls and floors below external ground level. Overall internal dimensions are used to calculate this envelope area and no subtractions are made for the area of the junctions of internal walls, floors and ceilings with exterior walls, floors and ceilings.

Air Exchange Rate

The air change rate is important in designing a ventilation system, however, it is hardly a part of the actual design. The number of inhabitants and area of residence are used in measuring residential ventilation rates.

Evaluating a Cold Roof Envelope Area

The area of the roof and ground floor should be the same. A cold roof is a roof that has its insulation in the ceiling and there’s a huge space between the insulation and rafters.

Warm Roof Construction Envelope Area Calculation

In a warm roof, an air barrier is inside the insulation which runs on the pitched roof rafters. The envelope area is the boundary between the internal environment and external environment (adjacent buildings), and can be found on the insulation’s warm part.

Getting the Building Ready

  • Temporarily seal and switch off all ventilation grids, smoke vents and mechanical ventilation systems
  • Close the windows and internal doors
  • Seal drainage traps.

How the Test Is Done

Check weather conditions (wind speed, temperature, barometric pressure); Fix a fan to an aperture, usually the door, in the building. Set up testing equipment. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Slowly raise the fan speed from 20-25Pa to 55-60Pa. At each fan speed, note the differences in air pressure in all the parts of the building.

Calculating Air Leakage

We analyse the recorded air tightness test data and present the results to the client in a technical report. In the event of test failure, we advise the client on appropriate mitigation measures. Our expert knowledge will help in highlighting the areas of air leakage. Air Pressure Testing & Compliance

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: Your heating expenses are less because heat doesn’t escape through a permeable building, and you won’t require appliances with more heating capability. Better ventilation system Reduced chance of mould and rot, as moisture is less likely to become trapped Infiltration of air is reduced and the inhabitants are more comfortable. Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. We render cost-effective services that include air leakage tests, design reappraisal, consultancy and support services for dwellings and non-dwellings in East-Dulwich.


Good and Best Practice Standards

Any new building has to be air tight. The 2010 Approved Document L1A of Building Regulations has made it compulsory. This regulation was put in place to conserve fuel and power. Part L1A further makes it obligatory for new buildings to be tested for air permeability in line with existing building standards.

Measuring Air Permeability on Building Envelopes (Dwellings) – To Technical Standard L1

There are technical standards for air tightness test of buildings in the UK detailed by Air Tightness Test and Measurement Association (ATTMA). The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

Undergoing an air tightness test is compulsory for your new building, according to Part L of Building Regulations. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. Find out from your SAP assessor if this is applicable to you. The required process for testing buildings for air tightness has been declared in ATTMA TSL1 for occupied buildings and ATTMA TSL2 for unoccupied ones. Air leakage testing is compulsory for residential areas and certain Non-Dwellings. Non-dwellings with a typical floor area less than 500m2 may be exempt. Where testing is not carried out, an assessed air permeability of 15 m3/h/m2 must be used in calculations.

Building Regulations Part L (England And Wales)

ATTMA has a scheme for air leakage test organisations, which commenced in January 2015. The scheme was approved by the government and is stated in Technical Standard L1 and L2. Its basis is the National Occupation Standard (NOS) and Minimum Technical Competence (MTC) documents standard for testing and essentials for testing knowledge.

Air tightness testers can be divided into three categories

  • Level 1: Testers can test dwellings and non-dwellings up to 4000m3 gross envelope volume when tested as a single entity, with a single fan.
  • Second Level – Testing is done in buildings with 4000m3 and higher. Large high rise and phased handover buildings are excluded from the test except a level three tester is in charge.
  • Air tightness testing for phased, zonal handover, LCHR and multifaceted constructions is carried out by level three experts.

Air Tightness Test Report

Accredited testing companies issue air pressure reports. Sealed extraction fans are sealed for testing and the details and results of the test are written in a report afterwards. The report will be produced in accordance with company’s procedures, the relevant standards and the requirements of all relevant governing bodies.

Test Results

AF Acoustics guarantees the test outcome is written in line with standard requirements; it picks out any deviations from the significant benchmarks inside the report and checks air permeability against target values. We make sure our report has the name of the building, customer, address and tester. Where applicable, we will identify pass or failure of your building and provide recommendations for any remedial action or improvement to the building if any further testing is required.

Resources Air Tightness Checklist – Building

Before our test engineers arrive at the site, please adhere to what is written below and send the required air tightness target of your dwelling that is in the design to us.

Air Leakage Pathway List –Ensure you thoroughly check the following equipment. Fill up drainage traps. Here are the pieces of equipment to cover, fill or seal:

  • Extract fans
  • Hoods of cookers
  • Drainage traps
  • Metre boxes
  • Boilers
  • Radiators, fans and heaters
  • Hot water tank
  • Chimney
  • Air bricks
  • Skirting and coving
  • Bath panel
  • Tumble drier extracts
  • MVHR
  • Soil panel

We Provide Temporary Sealing – the following should be temporarily sealed during the test;

  • Trickle Vents: Should be closed.
  • Extractor Fans / MVHR terminals: All extracts should be temporarily sealed (Please ensure these are off before sealing).
  • Cooker Hoods: Should be sealed from the outside or inside.
  • Chimney Flues and Air Bricks: Should be temporarily sealed.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.