ATTMA Licensed Air Tightness Testing in East-Finchley

Air tightness testing determines the quantity of air coming out of cracks in a building. It is also known as air permeability testing or air leakage testing. Since Approved Document L was reviewed in 2006, air tightness testing has become an essential part of building regulations for newly completed and rehabilitated buildings.

Changes to building regulations have addressed air leaks which affect a building’s energy efficiency. Our certificates for air tightness testing are registered with the Air Tightness Testing and Measurement Association (ATTMA), a professional body that focuses on high quality air tightness testing and air permeability applications. AF Acoustics, a licensed air tightness testing company, is available to provide testing services at your request. Our address is East-Finchley. You can also contact us for assessments and consultancy services. In addition to air leakage testing, we provide Part F Mechanical extract fan flow rate testing.

Because we are ATTMA members, any air tightness certificate we issue shows that the construction has met building regulation standards. Not only do we test the air permeability of your building, we describe the procedure in a professional manner and advise you on problem areas discovered during the evaluation. Our goal is always value for money and customer satisfaction. We are professionals and our services are of the highest quality.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing Explained

Air tightness testing is a technique whereby a newly constructed building is evaluated and the quantity of air leaking through is measured. Air leakage and air pressure are also used in place of air tightness. Air leakage should not be confused with ventilation. Also called draughts or infiltration, air leakage is unrestrained movement of air through holes in a building fabric, while ventilation is the restrained and planned movement of air. Air tightness testing is the recognised method used to measure total air lost through leaks in a building fabric. This is often referred to as uncontrolled ventilation (draughts). Too much air leakage leads to unnecessary heat loss and discomfort for the occupants. Air leakage from buildings causes heat loss, more energy is then used to keep the building warm, this is a cause of excess CO2 emissions. This has resulted in regulations which are centred on decreasing air leaks from the building fabric, therefore lowering CO2 emissions. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. With the introduction of tougher regulations, building designs will often consider air tightness at the early stages of the construction process, ensuring attention to detail during construction to create an air-tight envelope. Understanding this at an early stage can make a build cost-effective, of high quality, and energy efficient by minimising uncontrolled air leakage.

Air Leakage, what Is It?

Air leakage occurs when air escapes through holes and gaps in a building. Also known as infiltration, it is different from ventilation, which is air that enters a building in a controlled manner. As air leakage is uncontrolled, too much air may enter the house during cold or windy weather, leading to excessive heat loss and uncomfortable cold draughts. Testing for air leakage plays a primary role in determining the energy efficiency of a building. It is an important procedure that measures the air tightness level to ensure that the regulatory standards have been attained and the building’s energy calculations have been properly accomplished. In 2006, air tightness of newly constructed buildings and non-dwellings with a floor area over 500m² became compulsory in England and Wales.

What Is the Impact of Air Leakage?

When air escapes uncontrollably from a building, heat reduction occurs. During windy or cold weather, the infiltration of uncontrolled air through cracks in a building envelope occurs, leading to heat reduction. The infiltration of chilly air causes exfiltration, making warm air within the building escape through the spaces in other parts of the building. The warm air is filled with moisture, which hits the inner wall surface and condenses. Moisture is sucked into the building material, and this can lead to serious structural issues. Wet wooden framing or sheathing can rot and break down, diminishing its strength.

As the years go by, these conditions can result in structural damage.
Other damages that can occur are cold homes which make occupants uncomforta-ble, increase in heating bills to make the internal temperature warmer, and more carbon dioxide discharge since additional heat is required.

These effects can be mitigated by controlling the circulation of air into and out of the building. Adequately installed air barriers minimise air leaks and the probability of vapour condensing and diffusing into the building’s structure. Proper ventilation, whether active or passive, is critical in expelling undesirable damp scents, water vapour and polluting substances.


Why Should We Do an Air Tightness test?

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Home heating involves burning up fossil fuel which produces carbon dioxide and aids global warming. When air leakage is controlled, heat loss and energy used by the heating system are reduced. Properties with uncontrolled air leakage also cause health issues. A building with poor ventilation and high air permeability is conducive for moisture and mould growth which can affect the inhabitant’s health. Building tightly and ventilating the right way is highly recommended. Excess air leakage leads to moisture in the building envelope, causing large repair expenses and medical issues because of mould.

When Do I Need an Air Tightness Test?

Best practice says that air tightness tests should be carried out early in construction and after the final phase. The test results are part of SBEM and SAP calculations, therefore they influence the total energy ratings of new buildings. Large residential areas do not need each building to be tested. Instead, different types of dwellings are tested. Once every building in the residential development is not tested, the expected test result would have to be lowered by 2m3/h/m2. If 5m3/h/m2 was your target score, you must achieve 3m3/h/m2.

The assessed air permeability of an untested residence is a calculation of the average test score of the same kind of dwelling in the development, increased by 2m3/h/m2 at 50 Pa. This type of testing does not reveal the exact air tightness of each residence and is therefore not advisable. Moreover, the penalty implemented on untested buildings makes the required air permeability rate difficult to attain.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

With AF Acoustics, homes and businesses in East-Finchley have been getting quality air tightness testing. Our clients highly recommend us for the following reasons.

Helpful service and expert knowledge

Due to years of experience in conducting air tightness testing in different kinds of buildings in East-Finchley, we have the skills to meet your needs no matter the type or size of your property. Our air tightness experts are certified, well-mannered and competent. They’re trained to deliver a quality service, working as an extension of your project. Do you need trustworthy professionals who will provide great results in East-Finchley? Contact AF Acoustics today.

We Are Registered Members of the Air Tightness Testing and Measurement Association (ATTMA)

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

When Can You Call Us to Test Your Building?

We would like to give your building in East-Finchley a thorough air leakage test whenever it is needed. Pick a time that is convenient for you in our responsive scheduling options. We guarantee no delays or complications regarding scheduling.

You Could Get Your Certificates on the Next Day

In order to satisfy our clients, AF Acoustics strives to provide test results and certificates on the next day.

Affordable Prices

At AF Acoustics, we offer the most competitive prices in East-Finchley to ensure you have access to affordable air tightness testing when you need it. We keep the costs down, as we are a small business with low overheads. This allows us to be competitive with our pricing whilst guaranteeing a professional service.

Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing for Domestic & Commercial Buildings of All Types and Sizes in East-Finchley

We can test any building in East-Finchley for air leakages irrespective of its size, complex nature or type. Our tests are conducted by highly qualified professionals and we issue ATTMA certificates. You can find out how much uncontrolled ventilation your building has by testing it for air leakages. The results are written as The test results are described as m3/h/m2 – (m3 per hour) per square metre. of a building envelope.

Air leakage testing is required by Approved Document L1A and L2A. Although your building is required to have a rating result of 10m3/h/m2, the actual result might have to be lower than that due to carbon emission requirements. You can find the required air permeability rate of your building in its design-stage SAP assessment or SBEM. Excess air leakage causes heat loss, greater carbon dioxide discharge and can make occupants uncomfortable due to the influx of cold air. It also causes wind washing and thermal bypassing, resulting in lower energy performance. Warm air within a heated building rises and lowers the pressure at the building’s base to draw in air through the openings in the building fabric, leading to exfiltration or infiltration. Air permeability testing is a legal requirement for constructions in East-Finchley. This way, they can have high energy performance, meet building regulations requirements and get signed off by building control. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. It will also help you reduce the cost of maintaining heating or cooling in your commercial building, making it more productive.

The Part L Test

In 2006, Approved Document L was reviewed and building regulations for air permeability became tighter. The air tightness test is presently a requirement for new buildings and reconstructions. Air tightness is also called air leakage rate or ‘air permeability’ rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. The maximum air permeability rating allowed is 10m3/h/m2, but your building might need a lower rating ts. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

What Is Part F Test?

We can provide you all that you need to serve all your Part L and Part F requirements. Not only will we conduct your air tightness test and extract fan flow rate test, we will also recommend experts who can handle your SAP calculations, water calculations and Energy Performance Certificates satisfactorily.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. We use a vane anemometer, which is the third method called the minimum benchmark method, to conduct extract fan flow rate tests.


Forms of Air Pressure Testing Services We Provide

Here are the descriptions of the ways air permeability can be tested: Level 1: Air pressure testing for single dwellings and other smaller non-dwellings up to 4000 m³ gross envelope volume, typically tested with a single blower door fan. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Level Three: At this level, tests for the air pressure of high rise (LCHR) buildings and phased handover/zonal buildings.

Approved Document L1 Air Pressure Testing of Houses

Air pressure testing, involves the calculation of air escaping through openings in a building. The result is written as m3/h/m2 – (m3 per hour) per square metre of building envelope. Air pressure testing is compulsory, according to Approved Document L1A. The carbon discharge requirement for all buildings reduces the air permeability rate target. The required rate can be found in a building’s design-stage SAP assessment SBEM. Air leakage leads to heat loss, increased energy bills, greater CO2 emissions, and an uncomfortable atmosphere for inhabitants due to draughts.

Testing of Air Permeability of Commercial Dwellings, in Accordance with Document L2 Stipulations

The measurement of air emitted by a building is tested to ascertain air permeability rating. The air leakage test result is written as m3/h/m2 – (m3 per hour) per square metre of building. Document L2A of Building Regulations declares air leakage testing to be mandatory. The test results have a limit; they shouldn’t be higher than 10m3/h/m2. A building will usually have to achieve a lower rate to meet the SAP or SBEM assessment. The required air permeability rate for each building can be found on the design-stage SAP or SBEM report for that building. Too much air leakage leads to heat loss (and consequently, higher CO2 emissions) and draught.

Air Leakage Test of Smoke Shafts for Auto Vents

To ensure that the auto opening vent will perform optimally when fitted and commissioned, we test the smoke shaft to verify its air tightness. Smoke needs to be cleared out in the event of a fire. The automatic opening ventilation is a vital aspect of the fire strategy for high rise buildings. For it to expel smoke from a building and keep the occupants safe during emergencies, the shaft must be air tight enough to create substantial pressure difference. With the right air permeability rate, the vents can operate at their best. We aim for the air permeability rate set by the vent manufacturers. The shaft is tested for air permeability by using a fan that is fixed inside it. The usual openings are closed off too so that the shaft’s integrity can be determined. The test takes place in advance of the automatic-opening ventilation equipment being installed and commissioned.

Measurement of Air Flow of Domestic Ventilation

The requirement for air tight buildings that are properly insulated has brought about the need for ventilation systems that are adequately installed and function at an optimal level. We are able to test extraction rates. A building must have an optimal ventilation system to dispel humidity from bathrooms, kitchens and other rooms and extract odours and pollutants. We can also help you meet the Building Regulations targets. Part F states that all new constructions must have intermittent extractor fans whose air flow rates will be calculated and the results given to Building Control before the building work is finished.

Particular Test and Building Readiness Operation

Air tightness test determines the level of air permeability in a building. Improving the air tightness of a building not only enhances the comfort of the occupants, but can also increases the building’s energy efficiency.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The best solution to demonstrate a building’s air tightness level is to check for leakage paths in the building envelope.

Under the new policies of building developments, the lowest number of domestic buildings developers have to test in an area is 20%. However, this depends on the quantity of different house kinds to ensure there is a regular sample throughout the survey. There is a penalty for untested constructions. Therefore, we suggest air leakage tests for all buildings.

What You Need to Do Before Undertaking the Test

Clients should send the drawings (plans and elevations) and air permeability requirements to our engineers. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Seal and turn off all ventilation, smoke vents and mechanical ventilation systems
  • Close the windows and open internal doors
  • Fill drainage traps
  • Switch off range stoves/cookers 24 hours before the test

Measuring the Building’s Envelope

Before coming to the site, we get the measurement of the building’s envelope. The building envelope is the surface area of the thermal boundary of the building. The measurement is obtained from the construction drawings, and put in our calculations to conduct the test.

Air Permeability & The Envelope Area

Air permeability is measured as air leakage per hour per square metre of the building fabric at a pressure differential of 50 pascals (50n/m2). The air barrier envelope area is the total area of all the floors, walls and ceilings both above ground and underground. The internal dimensions of the building found in the drawings are used to calculate the envelope area and subtractions are not made from the areas of floors and ceilings with or without external walls or from the area of the junctions of internal walls.

Air Change Rate

Although hardly used as a major deciding factor for calculation or design, air exchange rate is vital in ventilation design. Residential ventilation rates are calculated based on area of the residence and number of occupants.

Evaluating a Cold Roof Envelope Area

When evaluating the roof area of a building, it is important to ensure the area is the same as that of the ground floor. A cold roof is the kind of roof where the insulation is fixed in the ceiling joists with space between the insulation and roof rafters.

Measuring a Warm Roof Construction’s Envelope Area

A warm roof has the insulation running along the pitched roof rafters with an air barrier normally running parallel along the inside face of the insulation. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Building Preparation

  • Turning off mechanical vents
  • Shutting all windows and internal doors
  • Temporarily seal vents and smoke vents
  • Filling the drainage stops

Process for Testing the building

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Place the fan on an aperture within the building envelope. Set up testing equipment. Using the fan, measure the air flow volume, from the building fabric. Gradually increase the speed of the fan to a maximum of 55-60Pa. Record pressure differences across the building at each fan speed.

Calculating Air Leakage

We can determine where air leakage is occurring through our test procedure. Once the test has been completed, we crosscheck the data and send a report to you. If the test fails, we will advise you about corrective measures. Testing for Air Tightness & Meeting Part L Standards

An airtight building has several positive impacts when combined with an appropriate ventilation system (whether natural, mechanical, or hybrid): Reduced heating expenses because of lower heat loss, with less need for equipment that has high heating ability. Better ventilation system Less mould will be trapped in the building fabric as a result of less moisture. Fewer draughts and enhanced comfort Be assured that you’ll get a test that meets all the regulations and standards no matter how big or small your building is. We provide air tightness testing, consultancy, design reviews and support services on all buildings, both dwellings and non-dwellings in East-Finchley. We also provide cost-effective, local service that complies with all relevant Building Standards.


Good and Best Practice Styles

The Building Regulations approved document Part L1A 2010 specifies that any new dwellings must be airtight. Reduced power usage and fuel conservation are important; that’s why the rule was put in place. Part L1A has demanded that all new dwellings be tested for air leaks in line with other regulations.

Air Tightness Testing of Dwellings That Meet Technical Standard L1L1

During air leakage tests, there are technical standards that must be used. This was mandated by ATTMA – Air Tightness Testing and Measurement Association–to align with building regulations and other rules. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for a quote on 020 3372 4430
Or you can email us at info@af-acoustics.com

Building Regulation Part L 2010 (England and Wales)

Approved document L1A has made it compulsory for all new buildings to be tested for air leaks. For development with two or more buildings, three units of each dwelling type or 50% of the dwelling type should be tested. Where there are only one or two new buildings, add an assumed value of 15m3/h/m2 to the DET/TER measurements; an air tightness test may not need to be carried out. Your SAP assessor will let you know if you can do this for your building. The method for testing required by the building regulations is stated in ATTMA TSL1 (for dwellings) and ATTMA TSL2 (for non-dwellings). Non-Dwellings and residential buildings are required to test for air leakage. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

Part L Building Regulations Standards for England and Wales

Most competent air pressure testing companies go through the ATTMA scheme, which began in January 2015, etence. The scheme is endorsed by the government and recognised by approved documents L1 and L2 of building regulations. It mirrors the operation standards and skill requirements set by the National Occupation Standard (NOS) and the Minimum Technical Competence (MTC) document.

There are three levels of testers:

  • Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope area and below, is done with a single fan.
  • The second level examines simple and complex buildings greater than 4000m3, with the exclusion of large zonal buildings and complex high-rise buildings unless a level three tester is in charge of the procedure.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Air Leakage Test Report

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. The testing companies seal extraction fans. After the test has been completed, they record test findings and results in a report. This is done according to the testing organisation’s procedures and Building Regulation standards.

Test Outcomes

AF Acoustics will make sure the result is written in line with test requirements, detect any part of the test that is not in line with the standards required and check actual air tightness against required rate. The identity of the customer, tester, building and address are correctly written in our report. Where it’s needed, we will identify if your building passed or failed the test and suggest ways to repair the building envelope before a retest is done.

Resources Air Tightness Checklist – Dwelling

Please send your design air pressure figure to us and go through the list below before we arrive at your site.

Air Permeability Pathway List – We will inspect every part for the building envelope for leaks.

  • Windows: Examine the seal below the sills and around the frames.
  • Doors: Inspect the seal around all external door surrounds. This is more applicable to French doors.
  • Drainage traps: Make sure they’re not filled with water.
  • Skirting and coving: Examine every part and seal where needed.
  • Meter Boxes: Make sure the external supplies are properly covered.
  • Light Fittings: Inspect the seal around all light fittings and switches.
  • Radiators/Fans /Heaters: Check the seal on pipes and wires.
  • Boilers: Inspect the seal around the boiler supply and flue.
  • Extractor Fans: Inspect the edge of the extracts and seal the front of the grill.
  • Cooker Hoods: Examine the seals around all penetrations.
  • Soil pipes: Inspect the seal around all soil pipes and sink waste pipes especially those inside or behind kitchen cupboards.
  • Bath Panels: Make sure all the pipes behind bath panels are sealed properly.
  • Hot water tank: Examine the seal around supply pipes.
  • MVHR: Examine seal around all terminals.
  • Chimneys: Cover the open fireplaces.
  • Junction between floor and wall under kitchens and baths
  • Tumble drier extracts: Study the seal around the extract.

Here are the appliances you should seal temporarily;

  • Cooker hoods
  • Extractor fans/MVHR terminals
  • Trickle vents
  • Chimney flues and air bricks

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on 100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)
Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.