Air Tightness Testing, Certified by AF-Acoustics, in Godalming

Air tightness testing, otherwise called air pressure testing or air leakage testing, is the measurement of the outflow of air from a building’s fabric. Air tightness testing became an integral part of building regulations for new buildings, commercial developments and revamped buildings in 2006 after Document L was reviewed.

Air leakage occurs through any opening in the building envelope and can affect a building’s energy performance, this has been addressed by changes to the building regulations. Our certificates are registered with the Air Tightness Testing and Measurement Association (ATTMA), an organisation that guarantees technical excellence in all air leakage measurement methods. AF Acoustics, a licensed air tightness testing company, is available to provide testing services at your request. Our address is Godalming. We also provide Part F mechanical extract fan flow rate testing, assessments and consultancy services.

As registered members of the ATTMA, our air tightness certificates are accepted as proof of building regulations sign-off. If you want specialist air pressure testing services in Godalming, AF Acoustics’ tightness testing services will

  • Describe the process to you,
  • Highlight possible problem areas that might occur during testing,
  • Conduct the air tightness test, and
  • Give advice on improvements based on the outcome of the test.

We deliver professional value for money service to the highest standards.

Our Guarantee

  • Over 15 years experience
  • State of the art equiptment
  • Onsite Support
  • Next Day Report Turn Around
Call us today for an assessment on 020 3372 4430
Or you can email us at info@af-acoustics.com

Air Tightness Testing – What Does It Mean?

Air tightness testing is a method of measuring the extent to which air is lost through leaks in the building fabric. It is sometimes referred to as air leakage testing or air pressure testing. While the normal restrained movement of air all through a building is called ventilation, the unchecked movement of air through cracks and gaps in a building is air leakage; also known as draught or infiltration. Draughts are uncontrolled ventilation. Using air tightness testing, the total air lost can be estimated. Once too much air escapes, heat reduction occurs, causing the temperature of the building to drop to a level that isn’t comfortable for those residing in it. The government aims to lessen the quantity of air flowing from newly built buildings. Therefore, regulations have been put in place to reduce uncontrolled ventilation from the building envelope, sustaining the right temperature conditions without using so much fuel. Calculating the emission of air from a building’s fabric, establishes the energy efficiency of the building. With the introduction of tougher regulations, building designs will often consider air tightness at the early stages of the construction process, ensuring attention to detail during construction to create an air-tight envelope. When the building fabric is properly constructed to reduce air loss, the building is economical, and energy efficient.

Air Leakage, what Is It?

Air leakage is uncontrolled air movement in a building due to cracks. Air leakage is the uncontrolled movement of air into and out of a building through gaps and spaces in the building’s fabric. Also called infiltration, it differs from ventilation which is the regular, planned and restrained flow of air into a building. It leads to heat deprivation when cold draughts happen and warmth is needed the most. Because air leakage is uncontrolled ventilation, excessive air flows into the house during windy and wintry weather. Air leakage testing plays a significant role in the energy-saving efficacy of properties. With air tightness testing, you can be sure that the building has met the stipulated targets used for energy calculation and air tightness. In England and Wales, air tightness testing has been mandatory since 2006 for all new builds and non-dwellings with a floor area over 500m².

Effects of Air Leakage

Heat loss within a building can be caused by air leakage. When the weather is cold and windy, unwanted air seeps into a building through the holes and cracks in its fabric, causing heat loss and discomfort. It doesn’t stop there. Warm, damp air within the building escapes the gaps in its envelope. The air hits the cooler surface in the inner parts of the wall. Water vapour condenses and gathers in these gaps. Eventually, it is absorbed and starts a myriad of defects. Wet wooden overlay or framing can decay, decreasing its durability.

Over the years, these problems can damage the building’s structure.
Other effects of air leakage are:

  • Discomfort; the environment is colder
  • Higher heat cost; a way of combating the cold, and
  • More CO2 emission because of the extra heat used.

The key to minimising the damage potential of moisture is effectively managing the flow of air into and out of the building. A properly installed air barrier minimises air leakage, which, in turn, minimises the potential for water vapour to condense on vulnerable wall structures. Correct ventilation is important, whether it is passive or active, to remove water vapour, unwanted moisture odour and pollutants.


Why Should We Do an Air Tightness test?

Air tightness is a key factor in building energy efficiency, and is a part of government-led initiative to combat climate change through improvements in building energy performance. Environmental change caused by carbon dioxide emissions and global warming is partly aided by the burning of fossil fuels to generate heat. A reduction in air leakage lessens the heat needed to keep a building warm. Uncontrolled air leakage also results in health problems. Coupled with poor air circulation, it leads to the growth of mould and mildew. The best advice is to “Construct tightly, ventilate properly”. High levels of air leakage can lead to moisture ingress into the building fabric, resulting in expensive repair costs and potential health problems due to mould.

When Do I Need an Air Tightness Test?

It is best practice to complete an air tightness test early on and then again at the final stage. Newly completed constructions’ energy ratings can be influenced by the test results, as they are used in SAP and SBEM calculations. It’s not a necessity to perform tests on each property, rather, different kinds of houses are selected and tested. This type of testing attracts a penalty of +2m3/h/m2, consequently, if the target result is 5m3/h/m2, a lower score of 3 would have to be attained.

If the building has not been tested for air tightness, assessed air permeability rate is the average result of similar buildings in the area +2m3/h/m2 at 50 Pa. Selective testing is not advisable, as it does not give a realistic picture of the air tightness of each individual building. A tested property might be a lot tighter than an untested property. Also, the penalty implemented on the untested houses make air permeability rates very difficult to achieve.

The reasons Why You Should Choose AF Acoustics for Your Air Tightness Testing

Business owners and home owners in Godalming have been helped by AF Acoustics air tightness testing. Our customers highly recommend us to other people due to the following benefits.

Service and knowledge

Our vast experience in serving a variety of clients in Godalming guarantees we have the expertise to satisfy your needs regardless your unique circumstances, type or size of property. We have competent and accredited air testing professionals who provide a quality, convenient service. Our knowledgeable and dependable air testing experts will provide lasting solutions to your problem. Call AF Acoustics for your air tightness testing.

Registered Members of the Leading Air Tightness Body in the UK

We are registered members of the Air Tightness and Measurement Association (ATTMA). ATTMA encourages proper air leakage applications and promotes quality air tightness screening, and has recognised our impeccable professional services.

Picking a Time for Your Air Permeability Test

We want you to be able to access comprehensive air tightness testing in Godalming whenever you need it. Simply fix a convenient time for your building’s air permeability test. We offer responsive scheduling. We won’t make you wait or make the process complicated.

Next-day Turnaround for Certificates

AF Acoustics has professional speedy services to satisfy clients who want their test results immediately. We have a next day turnaround policy for our test certificates and endeavour to deliver in all situations.

Competitive Pricing

AF Acoustics fees are lower since we’re a company with low overheads. Our services are professional and we offer affordable prices in Godalming.

Call us today for an assessment on 020 3372 4430
Or you can email us at info@af-acoustics.com

Get Air Leakages Test for Homes and Commercial buildings in Godalming

All domestic and commercial buildings in Godalming can be tested by AF Acoustics, no matter how complex they are. The air tightness tests are carried out by competent testers and you will be issued an ATTMA certificate. The best way to determine how much air seeps through a building’s fabric is through air permeability testing. The test results are described as The test results are described as m3/h/m2 – (m3 per hour) per square metre..

Air leakage testing is required by Approved Document L1A and L2A. A maximum air permeability rate of 10m3/h/m2 is required. However, a building has to achieve a lower rate to meet the carbon emission target. To get your building’s required air permeability rate, check its design-stage SAP assessment SBEM. Several problems are caused by uncontrolled ventilation. They are:

  • Infiltration of cold air
  • Wind washing and thermal bypassing, which is when air moves through the inner building of a building fabric to create convective loops inside the walls, making the building less energy efficient
  • Reduction in heat and CO2 emission.

Exfiltration/infiltration of air is caused by a stack effect. Due to the pressure difference inside and outside the building, rising warm air reduces the pressure in the base of the building and draws in air, whether through open doors, windows or other openings and leakage points. To limit exfiltration and infiltration, the law requires that domestic buildings take air leakage tests. The buildings must be energy efficient and signed off by building control in Godalming. For your commercial building, air tightness testing will ensure your staff and clients are in a comfortable environment. This increases the company’s productivity and lowers heating and cooling expenses.

What Is Part L Test?

Air tightness testing has been a compulsory part of the Building Regulations for new dwellings, renovations and commercial projects since the revision of Document L in 2006. Air tightness is also called air leakage rate or ‘air permeability’ rate. Air leakage can occur through gaps, holes and cracks in the fabric of the building envelope (service penetrations, wall/roof junctions, etc), which are not always visible. Samples of houses in an area and all non-domestic buildings with more than an area of to m2 must be tested, according to Part L of the Building Regulations. The maximum air permeability rating allowed is 10m3/h/m2, but your building might need a lower rating ts. Air tightness is important for meeting the Building Regulations Part L standards, exceeding requirements for low carbon buildings, and overall energy efficiency.

A Description of Part F Test

We can provide you all that you need to serve all your Part L and Part F requirements. First, we provide extract fan flow rate and air leakage testing. Then we put you in contact with competent professional to work on your Energy Performance Certificates, SAP and water calculations.
According to Part F, it is compulsory for a flow rate test to be conducted on all mechanical extract fans of new buildings. Building Control Body (BCB) will see proof that the test has been conducted before signing off your building. There are three alternative methods which can be followed to test, record and report the testing of extractor fans. Use method 3 – the minimum benchmark method, which tests extractor fans with vane anemometers. This is our testing procedure.


Forms of Air Pressure Testing Services We Provide

There are several levels of air leakage testing based on the kind, size and multifaceted aspects of a dwelling. Here they are: Level One: Testing for the air pressure of single buildings and smaller non-dwellings of 4000m3 gross envelope volume and below, a single blower door fan is used. Second Level – Testing is done for building 4000m3 and higher, typically simple and complex dwellings. High rise and phased handover buildings are not part of this test. Air tightness testing for phased, zonal handover and LCHR constructions is done.

Air Tightness Testing of Houses and Flats to Meet Approved Document L1

An air leakage test is a test to determine the level of uncontrolled air flow through gaps or cracks in the fabric of a building. The result is written as m3 per hour per square metre of building. Air tightness testing is required for new builds. In order to comply with the carbon emission target, it is necessary to achieve a lower air permeability rate. The required air permeability rate for a dwelling can be found on the design-stage SAP report for that dwelling. An excessive amount of air leakage results in greater energy expenses, heat reduction and carbon dioxide emissions.

Approved Document L2A Air Pressure Testing of Commercial Constructions

Air pressure testing involves the calculation of air escaping through the openings in a building. The result of the air leakage test is expressed as a quantity of air leakage (m3 per hour) per square metre of building envelope. Air leakage testing is a requirement of Approved Document L2A. The test results have a limit; they shouldn’t be higher than 10m3/h/m2. The SAP or SBEM assessment for all buildings reduces the air permeability rate target. The air permeability target can be found in a building’s design-stage SAP or SBEM assessment. Excess air leakage causes heat loss, greater carbon dioxide discharge and influx of cold air.

Air Permeability Testing of Smoke Shafts (for automatic opening vents)

We provide smoke shaft tests to make sure it is air tight enough to let the automatic opening ventilation work optimally when it’s installed and commissioned. The automatic-opening vents are a key part of the fire strategy for multi-storey buildings to extract smoke in the case of a fire. An air tight shaft creates sufficient pressure difference and ensures that the fans and vents perform properly to draw out smoke from a dwelling and save its occupants. AF Acoustics aims for the air permeability requirements of the automatic opening vent producers, so that their product can perform optimally. Fans are placed in the smoke shaft to conduct an air tightness test. The intended openings of the shaft (i.e. extract point and openings for ventilation grilles on each floor) are sealed off for the test so that the integrity of the shaft itself can be determined. The test takes place in advance of the automatic-opening ventilation equipment being installed and commissioned.

Air Flow Measurement of Domestic Ventilation (extraction fan testing)

The requirement to build more highly insulated and air tight buildings means that it is increasingly more important to ensure buildings are not only adequately ventilated but the ventilation system is suitable and commissioned correctly to ensure its effective operation. We have the capacity to test extraction rates. This test is required by law and it enables a building have a high-quality ventilation system that is efficient and removes pollutants and odours while limiting humidity in rooms, especially in kitchens and bathrooms. The air flow rates of all intermittent extractor fans, which are to be installed during the building process, are to be tested and the results submitted to the Building Control Body before work is completed.

Specific Test and Building Preparation Procedure

Air tightness test determines the level of air permeability in a building. The air tightness of a building improves its energy efficiency and internal environment.

It is difficult to notice unwanted openings in a building envelope. They might be blocked by the internal finishes. The only satisfactory way to show that a building fabric is airtight is to detect and measure leakage paths within the building fabric.

Under the new regulations developers must test 20% of the dwellings on a site but this also depends on the amount of differing house types to ensure that a consistent sample is taken throughout the construction of the development. We recommend that all dwellings be tested, as there is a penalty for developments that are not tested.

What You Need to Do Before Undertaking the Test

Our test engineers would like to see the drawings (plans and elevations) and design air permeability requirements of your building before taking the test. An Air tightness test can be done in 30 – 60mins. Wind speed should not exceed 6m/s. Test engineers need to know the size of a building envelope and requirements before coming to the site. To get the site ready, make the place air tight by closing and securing all external doors, windows, ventilation and smoke vents. Remember to turn off range cookers or stoves a day before testing as well as mechanical ventilation systems, and fill all drainage traps.

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal ventilation;
  • Close smoke vents;
  • Fill all drainage traps;
  • Switch off all range cookers/stoves 24 hours before testing (if applicable)

Building Envelope Measurement

We undertake building envelope measurements before getting to the dwelling for the test. A building envelope is the boundary between the conditioned and unconditioned environment of a building. We use the building envelope measurements to get the right results when testing for air tightness.

Air Permeability & The Envelope Area

Air permeability is calculated at air leakage rate per square metre of envelope area. In relation to air permeability, the air envelope area is the total area of the measured part of the building without subtracting from the area of the junction of internal walls, or floors and ceilings. The envelope area of a terraced house includes the party walls while that of a flat in a multi-storey building includes shared ceilings, walls and floors.

Air Exchange Rate

Air change rates are often used as rules of thumb in ventilation design but they are seldom used as the actual basis of design or a calculation. The calculation of residential ventilation rates is dependent on the area of the homes and number of occupants.

Cold Roof Envelope Area Measurement

It is important to make sure the roof area and ground floor area of a building are equal. A cold roof is the kind of roof where the insulation is fixed in the ceiling joists with space between the insulation and roof rafters.

Calculating the Envelope Area of a Warm Roof

In a warm roof, the main insulation is placed below the roof covering. The envelope area is the barrier between the conditioned space in the insulation and the unconditioned space outside.

Building Preparation

  • Open and secure all internal doors;
  • Close all windows;
  • Switch off all mechanical ventilation systems;
  • Seal vents;
  • Close smoke vents;
  • Fill all drainage traps; check weather conditions (wind speed, temperature, barometric pressure);

Site Test Procedure

Measure the weather conditions. Check the temperature, barometric pressure and wind speed. Connect a fan (or fans) to an aperture in the building envelope (e.g. door). Set up the testing gear. Record the air volume flow through the fan (this equals the air leaking through the building envelope). Slowly raise the fan speed from 20-25Pa to 55-60Pa. Note the difference in air pressure in several parts of the building at each fan speed.

Measuring air leakage

We analyse the air tightness test data, point out any air leakage path and send a report to clients. If the building fails the test, we suggest remedial measures to the client. Testing for Air Tightness & Meeting Part L Standards

When a building has the right kind of ventilation (mechanical, natural or a combination of both) and has a low permeability rate, the advantages to the occupants are numerous. Some of them are: Lower energy costs and need for heating appliances due to a higher level of heat retention. Better ventilation system Your building will have less mould since moisture cannot escape into holes and cavities. Infiltration of air is reduced and the inhabitants are more comfortable. From a single dwelling to the largest commercial development, we offer stress-free compliance measurements to Part L Building Regulations and Building Standards. Our services include: air pressure testing, support services, re-examining designs and consultancy for all buildings in Godalming. We are cost effective and adhere to all building regulations.


Good and Best Practice Styles

All new buildings, residential or commercial, must be air tight, according to Approved Document Part L1A of Building Regulations (2010). This regulation was put in place to conserve fuel and power. The dwelling should be tested for air permeability in line with existing building standards, as stipulated by Approved Document Part L1A.

Testing for Air Tightness in Building Fabrics of Dwellings to Adhere to Technical Standards L1

The Air Tightness Testing & Measurement Association (ATTMA) provides the technical standard to be followed for the testing of dwellings in the UK as set out in Building Regulations and other documents. The technical standards ensure that all companies have similar testing procedures. They are:

  • “Thermal Performance of Buildings. Determination of air permeability of buildings. Fan pressurisation method” BS EN 13829:2001, and
  • “Thermal performance of buildings – Determination of permeability of buildings – Fan pressurization method” ISO 9972:2015
Call us today for an assessment on 020 3372 4430
Or you can email us at info@af-acoustics.com

Part L 2010 Building Regulation Standards for England and Wales

Undergoing an air tightness test is compulsory for your new building, according to Part L of Building Regulations. 50% or 3 units of each dwelling type should undergo an air leakage test in the case of an area with two or more dwellings. A development with only two dwellings may not undergo a test if a suggested value of 15m3/h/m2 is stipulated in the DER/TER measurements. Your SAP assessor will be able to confirm if this is the case for your dwelling. ATTMA TSL1 and ATTMA TSL2 prescribe methods for testing occupied and unoccupied buildings. Air leakage testing is compulsory for residential areas and certain Non-Dwellings. If your building has added an estimated assessed rate of 15 m3/h/m2 in its calculations or its useful floor space is less than 500 m2, it may not have to take the test.

England and Wales: Building Regulations Part L

In January 2015, the ATTMA Scheme for Competent Air Tightness Testing Firms and Their Testers (The ATTMA Scheme) was launched. It is an industry competence scheme authorised by the government and specified in Technical Standard L1 & L2. The scheme echoes the conditions of the Minimum Technical Competence (MTC) and the National Occupation Standard (NOS) documents.

Testers can be divided into three types

  • First Level – For buildings not more than 1m3-4000m3, typically single and smaller non-dwellings, a single fan is used to carry out air tightness testing.
  • Level Two: Testing for the air pressure is done in all single and multifaceted buildings. High rise (LCHR) buildings and phased handover/zonal buildings are excluded from this level, except a level 3 tester is in charge of the team.
  • Level 3: These are air tightness experts who can cover large, complex and or high-rise buildings and or phased handover or zonal compartmentalisation.

Report on Test for Air Permeability

Test reports are issued by registered and licensed air tightness companies who test buildings of different sizes and complexities. Temporary sealing of extraction units will be done by the tester; all test results will be noted, and a shortened form report will be written which will include the findings of the test. The organisation makes sure the report meets the company and government’s requirements.

Test Outcomes

AF Acoustics will ensure the test result is written in accordance with the test standard requirements, identify any deviations from the relevant standards within the report and check air tightness against target value. We make sure our report has the name of the building, customer, address and tester. We will state if your building has passed or failed the test and give advice on the actions you need to take if another test is needed.

Resources Air Tightness Checklist – Dwelling

Before we arrive on site, ensure you have sent us the air permeability target and been through the checklist below and the ones we have sent you. This will greatly facilitate the process.

Air Leakage Pathway Checklist – Check will be done for visible leaks in the following places:

  • Windows: Check the seal beneath the sills and around the frames.
  • Doors: Check the seal around all external door surrounds (especially French doors).
  • Drainage traps: Check if they are filled with water.
  • Skirting and coving: Check above and below all skirting and coving, sealing where necessary.
  • Metre Boxes: Check all external supplies are sealed appropriately.
  • Light Fittings: Check the seal around all light fittings and switches.
  • Radiators / Fans / Heaters: Check the seal around all pipes and wires.
  • Boilers: Check the seal around the boiler supply and flue.
  • Extractor Fans: Check around the edge of the extracts, only the front of the grill can be sealed.
  • Cooker Hoods: Check the seals around all penetrations.
  • Soil pipes: Check the seal around all soil pipes and sink waste pipes especially those boxed in or behind kitchen cabinets.
  • Bath Panels: Check if all pipes behind bath panels are sealed properly.
  • Hot water tank: Check the seal around all supply pipes.
  • MVHR: Check seal around all terminals.
  • Chimneys: Open fireplaces must be sealed prior to our arrival.
  • Tumble drier extracts: Check the seal around the extract.
  • Junction between floor and wall under kitchens and baths

Temporarily cover the following;

  • Trickle Vents: Close them.
  • MVHR Terminal/Extract Fans: Switch off and seal temporarily.
  • Air Bricks and Chimney Flues: Cover temporarily.
  • Cooker Hoods: Seal off from the inside or outside.

Air Tightness Testing FAQ’s

Air leakage is the uncontrolled flow of air through gaps and cracks in the fabric of a building (sometimes called infiltration or draughts).

This is not to be confused with ventilation. Which is the controlled flow of air into and out of the building through purpose-built ventilators that are required for the comfort and safety of occupants.

Too much air leakage leads to unnecessary heat loss and discomfort to the occupants from cold draughts.

At AF Acoustics, we will endeavour to help you identify air leakage/infiltration paths.

There are a number of methods we employ to do this, including:

  • Smoke pens– smoke can be used to identify where air is moving when the building is being tested
  • Depressurise the building –By depressurising the building air is drawn in and can be felt at the air leakage points, our experience will be able to pin point these locations easily, whist the building is being depressurised, we will be able to show you around and will point you to the areas that have air leakage. You will usually be able to feel the air blowing on your skin when you are close to leakage areas, using the smoke pens these leakage points can be seen as the smoke changes from a steady flow to a turbulent flow.
  • Smoke testing – if the air paths are less direct it may be necessary to use smoke puffers and/or fill the building with smoke and pressurise/depressurise again. Points of air ingress and egress should be identifiable.
  • Thermography – if it is still not apparent where air is escaping, infra-red cameras can be used to identify hot spots and cold spots on the internal and external surfaces of the building. This requires a temperature difference between the inside and outside.

In the vast majority of cases the first two methods are sufficient to identify the most significant air leakage paths along with our expertise we will be able to point our the problem areas should they arise. The air leakage areas will have to permanently sealed and the test repeated to reduce the air permeability of the building. Where problems are larger and sealing cannot be addressed on the day, the building may need to be re-tested at a later date.

A test certificate from The Air Tightness Testing and Measurement Association (ATTMA)

A testing procedure is to be carried out to comply with TSL1 for domestic or TSL2 for commercial. The test certificate will include sufficient information to describe the building tested e.g. location, type and size (the envelope area is an important component in calculating the air permeability and must be accurate) plus the design air permeability as well as the actual result. A testing procedure should be representative of the actual building performance.

An indicative result is available at the time of testing. Certificates can be issued within a day of testing.

If required, you can request all calculations including pre, and post environmental measurements, individual static pressures, envelope area breakdown, flow readings and calibration certificates at no extra charge.

Air permeability is essentially a function of the pressure difference between the inside and outside of the building and the air flow rate through the fan(s), necessary to produce a pressure difference. This is averaged out over the envelope area. The result takes account of environmental conditions.

The final air permeability at 50 Pa is based on a logarithmic graph of pressure difference and flow rate, the graph should:

  • Have at least 7 points (ideally 10 or more).
  • At least one building pressure >50Pa and at least on <50Pa, No building pressures >100Pa.
  • The lowest figure should be at least 10 Pa or 5 times the ‘static pressure’ (the pressure difference between inside and outside without the fans)
  • The readings should be no more than 10 Pa apart.
  • The correlation coefficient r2 >0.98
  • The gradient of the graph (n) should be between 0.5 and 1.0.

These are aspects that the building control should check carefully if choosing to accept air permeability results from non-accredited testing bodies.

Most air tightness tests for domestic units and simple commercial units are carried out in 45 – 60 minutes. This time may be extended if the test fails and leakage paths are investigated. We will normally charge for a retest depending on how much work is to be carried out.

On larger commercial units, which require 1 large air test fan, air tests take 1 hour if all temporary sealing has been completed prior to starting the air test.

If complicated or very large buildings are being air tested with multiple fan units, allow up to 4 hours for the test and longer if investigations are required.

The envelope area is calculated from the drawings and verified on site. The envelope of the building is all the surfaces that separate the heated interior from the unheated exterior of the dwelling. This includes walls, floors and the roof.

Generally, this involves mounting a door profile and incorporating one or more electrical fans into an external door opening(s). Depending on their orientation, the fans can be used to pressurise or depressurise the building. The resulting difference between the external and internal pressure can be used to calculate the permeability of the building envelope (given that the envelope area is known).

This permeability is an indicator of how air tight the building is, and whether there are openings in the envelope. Generally, 10 differential pressure points are taken at different fan flows to establish an accurate result for the building. Our certified specialised software is used to establish an accurate Air Tightness Test result.

Our experts at AF Acoustics will provide a simple checklist for building preparation, which includes the following:

  • The building should be ‘completed’
  • All external doors and windows closed
  • All internal doors wedged open
  • All fire dampers, ventilation louvres and trickle vents closed but not sealed
  • Mechanical ventilation turned off with inlet/outlet grilles sealed
  • All combustion appliances switched off
  • Drainage traps must contain water
  • Any ‘Aga’ type stoves must be switched off for a minimum of 24 hours prior to testing

All building preparations should be made before our test engineers arrive on the site this will ensure a smooth testing process and increase your dwelling’s chances of passing the test the first time. We will seal all the vents ourselves.

For multiple dwellings it may also be necessary to agree on the test programme with the building inspector before arriving on site.

Where possible, it is helpful to accurately calculate the envelope area and confirm the fan installation arrangements based on architectural drawings before coming to the site.

  1. How many plots are going to be tested
  2. The location
  3. The plans and elevation drawings, cross sections if possible
  4. The air permeability target
  5. A brief description of the property; e.g. does it have fireplace or a loft?

For dwellings, sufficient information is required to identify the different dwelling types and the number of each such as General Arrangement/Site Plan and Schedule (including other important details such as variation in storey height or construction method).

For buildings other than dwellings, the approximate envelope area is the key factor for quoting. It is required to establish the necessary fan arrangement. This affects the time on site and potentially the number of people, and this can be calculated from drawings – floor plans and elevations.

The testing body may also need to identify the potential aperture(s) into which test equipment is to be installed. In some circumstances this may require additional time on site, extra people or customised templates.

Approved Document L states that Building Control can accept evidence from BINDT or ATTMA Registered testers. However, the BINDT scheme was closed down at the end of 2014, subsequent to the last revision of Approved Document L. Additionally, The Independent Air Tightness Testing Scheme (iATS) is an authorised Competent Persons Scheme created for companies (including sole traders and partnerships) that carry out Air Tightness Testing.

The common leakage sites are:

All pipe works within the kitchen and bathrooms

  • Holes in the walls
  • Radiator pipe work penetrations in floors and walls
  • Sanitary pipes penetrating walls and floors
  • Junction between floor and wall under kitchens and baths
  • Junction lower floor / vertical wall
  • Junction window sill / vertical wall
  • Junction window lintel / vertical wall
  • Junction window reveal / vertical wall (horizontal view)
  • Vertical wall (cross section)
  • Perforation vertical wall
  • Junction top floor / vertical wall
  • Penetration of top floor
  • Junction French window / vertical wall
  • Junction inclined roof / vertical wall
  • Penetration inclined roof
  • Junction inclined roof / roof ridge
  • Junction inclined roof / window
  • Junction rolling blind / vertical wall
  • Junction intermediate floor / vertical wall
  • Junction exterior door lintel / vertical wall
  • Junction exterior door sill / sill
  • Penetration lower floor / crawlspace or basement
  • Junction service shaft / access door
  • Junction internal wall / intermediate floor

Our team of experts can support you through the following

  • Tender Stage – Estimate pricing structures and general advice
  • Design Stage – Desktop or site-based design team meetings
  • During Construction – Ongoing audits of the building, Building Control liaison, sample testing of completed areas of ‘comfort testing’ prior to final testing
  • Upon completion – preparation advice, shortly prior to the air testing, final testing and leakage diagnosis

Additional AF Acoustics services – including noise survey, sound insulation testing services noise impact assessments

Employing the services of a reputable and accredited air tightness testing consultant, such as AF Acoustics, can help identify and remedy potential problem details in a building design prior to and during construction.

The Air Tightness Testing and Measurement Association (ATTMA) is approved by Department for Communities and Local Governments (DCLG) and is listed in the Building Regulations as an authorised Competent Persons Scheme for air tightness testing.

As an ATTMA registered company, AF Acoustics is independently certified by ATTMA with a scope covering air tightness testing to the ATTMA Technical Standards (TSL1 & TSL2) and BS EN: 13829 (2001), demonstrating knowledge and understanding, which enables us to test both commercial and domestic developments in accordance with relevant building regulations.

Part L sets the energy efficiency standards required by the Building Regulations. It controls:

  • The insulation values of building elements
  • The allowable area of windows, doors and other openings
  • Air permeability of the building
  • The heating efficiency of boilers
  • The insulation and controls for heating appliances and systems together with hot water storage and lighting efficiency

It also sets out the requirements for SAP (Standard Assessment Procedure) Calculations and Carbon Emission Targets for dwellings. In addition to insulation requirements and limitations of openings of the building fabric.
Part L also considers:

  • Solar heating and heat gains to buildings
  • Heating, mechanical ventilation and air conditioning systems
  • Lighting efficiency
  • Space heating controls
  • Air permeability
  • Solar emission
  • The certification, testing and commissioning of heating and ventilation systems
  • Requirements for energy metres

Building Regulations are administered separately in England, Scotland and Wales.

The objective is to measure the volume of conditioned air escaping through the building envelope via uncontrolled ventilation at an induced pressure difference of 50 Pa. A simplified process is shown below:

  • Check site preparation / Prepare site – including temporary sealing.
  • Calculate the envelope area.
  • Take environmental condition measurements – wind speed, temperatures, barometric pressures.
  • Install door frame canvas for the fan into a suitable aperture(s), usually the front door.
  • Install fan(s) into frame canvas
  • Connect monitoring equipment.
  • Check the static pressure.
  • Take multiple pressure difference readings and record fan flow rate(s) – allowing sufficient time for the pressure readings to stabilise.
  • Check the static pressure.
  • Process the readings through appropriate software – check that readings fulfil the requirements of the standard.
  • If the building fails, attempt to identify/quantify air leakage/infiltration paths.
  • Disconnect measurement equipment.
  • Remove the fan(s).
  • Remove the door frame canvas.

No. However due to the penalties occurred to the air permeability value of non-tested properties, every property is usually tested. We can test all dwellings, including domestic buildings, industrial units, warehouses, schools, hospitals, residential care homes, hotels, offices, and retail units.

All new buildings and dwellings should be tested, but there are some exceptions and they are explained below:

  • ‘Small’ commercial buildings (with a floor area less than 500m2) may avoid the need to test by accepting an assumed poor value for air permeability (15m³/(h.m²) at 50 Pa) but this may add costs to other aspects of the building specification so that the building meets the overall target for emissions.

No. Air tightness testing applies to:

  • All new dwellings (based on a sampling rate)
  • All new buildings other than dwellings
  • Extensions to existing buildings that create new dwellings

Air tightness is an important factor in assessing the overall carbon emission of a building via the appropriate calculation methodology:

When a building is air tight, the amount of fuel needed to heat it is reduced. This conserves fuel and reduces the carbon dioxide produced, thereby lowering carbon emission and energy bills.

If you are building a new domestic property or commercial property of a certain size, it will need to undergo air tightness testing. This assesses the building for ‘air permeability’, checking for air leakage through gaps, holes and other areas. The Government has SAP (Standard Assessment Procedures) in place for air tightness testing, setting standards buildings must comply with to be energy efficient.

All residential properties and non-dwellings properties over a certain size (with a floor area greater than 500 m2) must undergo air tightness testing. With larger developments, a sample number of the buildings must be tested, depending on the size and construction of the properties. However, in practice all dwellings are likely to be tested, as non-testing attracts a severe penalty.

In a property where air tightness is below the recommended standard, the following problems can occur:

  • heat loss
  • discomfort (cold homes)
  • increased heating bills (to counter the cold)
  • greater CO² emissions (as result of additional heating required)

Load More

Image module

Gerard Finn

AF Acoustics lead air tightness testing Specialist, Gerard is your first port of call for all air tightness questions enquiries and surveys.

Working Hours

  • Monday 08:00 - 18:00
  • Tuesday 08:00 - 18:00
  • Wednesday 08:00 - 18:00
  • Thursday 08:00 - 18:00
  • Friday 08:00 - 18:00
  • Saturday Closed
  • Sunday Closed